
6.2 notes calculus 

Definite Integrals 

 
Estimating areas using finite sums is one way of calculating accumulations.  Earlier we said differential 

calculus deals with rates of change.  Integral calculus deals with accumulations.  The definite integral is 

a way of calculating the area under a curve. 

 

We estimated areas using a finite number of rectangles or volumes that we added together.  What we did 

in section 6.1 was rather tedious work.  We can use “sigma” notation to write large sums in a compact 

form.  
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Greek letter sigma means sum.  K is the index or what term we are starting with/on. 

 

One approximation (in 6.1) that we used was 
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The sums that we are interested in are called “Riemann” sums, named after Georg Riemann who 

developed this method for finding the area under a curve.  Riemann’s idea was to break an interval into 

arbitrary rectangles that when added together, approximate the area under the curve.  

 

First:   we need a function defined on an interval.   

Second:   we need to “partition” the interval.  A partition breaks an interval into subintervals 

Third:   select a number in each subinterval and compute the functions value at that point f(ck)  

Fourth:  Make a rectangle in each subinterval that has width ∆xn and height f(ck) 

Fifth:  Sum the area of all the rectangles 

 

Since there are n subintervals, the sum of those n rectangles is  
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The sum, which depends on the partition and on the ck is called a Riemann Sum for f on [a,b] 

Riemann sums are approximations!  How could we make this better? 

What would happen if the partitions became finer and finer?  The rectangles would become smaller and 

smaller.  What would happen to the Riemann Sum?   

 

Look at 6.15   
If we think of Riemann sums as LRAM, MRAM, and RRAM all of these converged to a common limit as 

we refined the partition.   

This is true of Riemann Sums.  All Riemann sums converge to a common value as long as each ∆xk tends 

to zero.  We can guarantee that the subintervals will go to zero by saying that the “norm” of the partition 

will tend to zero.  This is noted ║P║→0 “the magnitude of the longest subinterval will tend to zero.” 

 



Definition of Definite Integral as a Limit of Riemann Sums 
Let f be a function defined on a closed interval [a,b].  For any partition P of [a,b], let numbers ck be 

chosen arbitrarily in the subintervals [xk-1, xk].   If there exists a number I such that  
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definite integral of f over [a,b] 

 

In other words the definite integral is the area under a curve on a closed interval 

 

If a function has an integral the function is said to be integrable. 

 

All continuous functions are integrable. 

 

Theorem 1:  The Existence of Definite Integrals   

All continuous functions are integrable.  That is, if a function f is continuous on an interval [a, b], then its 

definite integral over [a, b] exists.  

 

Because continuous functions are so nice, we can add some uniformity. 
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  dx’s are uniform 

We now change notation for the last time 
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  Sum of each rectangle (f(x))(dx) from a to b = “integral from a to b of f(x)dx 

 

Look at integral notation on page 281.  Label each part.  
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No matter how we represent the integral, it is the same number, defined as a limit of Riemann sums.  

Since it does not matter what letter we use to run from a to b the variable of integration is called a dummy 

variable.   

 

Example 1 Using the Notation 

 

 

 



Definition:  Area under a Curve (as a Definite Integral) 

If y=f(x) is nonnegative and integrable over a closed interval [a,b], then the area under the curve y=f(x) 

from a to b is the integral of f from a to b.  
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This definition works both ways:  We can use integrals to calculate areas and we can use areas to 

calculate integrals. 

 

Some areas are difficult 

Some areas are easy. 
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Can area ever be negative? 

 

What if we have a function that has negative function values? 

 

Example:  
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If an integrable function y=f(x) has both positive and negative values on an interval [a,b], then the 

Riemann sums for f on [a,b] add areas of rectangles that lie above the x-axis to the negatives of areas of 

rectangles that lie below the x-axis.  The value of the integral is the area above the x-axis minus the area 

below.  
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Exploration 1 

 

 

 

 

 

 

One of the easiest types of functions to integrate is a constant function. 



Theorem 2 The Integral of a Constant 

If f(x) = c, where c is a constant, on the interval [a,b], then 
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Examples: 

#7   

1

2
5dx

  

 

 

 

#8 

7

3
( 20)dx  

 

 

In each case we took the constant and multiplied it by the length of the interval.  c(b-a) 

 

Example 3  

 

 

Just like your calculator will do numeric derivatives, it will also do numeric integrals.  It calculates 

Riemann sums very quickly.    

 

Integrals on a Calculator 

Using a ti-84….find “fnInt”  Math key #9.  Paste it to the home screen (f(x), x, a, b) 
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Discontinuous Integrable Functions 

Can functions that are discontinuous be integrable?  Some can. 

 

Example:  Graph    
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Why does this work? 

Exploration 2  

 

 

 


