Solving Trigonometric Equations

Basic steps for solving $\cos x=a$:

1. Find all the angles on the unit circle (on $[0,2 \pi]$) that satisfy the equation. If a is not a unit circle value, use $\cos ^{-1}(a)$ to find one of the angles, then figure out any other angles with the same cosine (draw the angle and figure out the other angle with the same x-coordinate on the unit circle).
2. Add or subtract $2 \pi k$ from each angle, where k is any integer.

Basic steps for solving $\sin x=a$:

1. Find all the angles on the unit circle (on $[0,2 \pi]$) that satisfy the equation. If a is not a unit circle value, use $\sin ^{-1}(a)$ to find one of the angles (if you get a negative angle, add 2π), then figure out any other angles with the same sine (draw the angle and figure out the other angle with the same y-coordinate on the unit circle).
2. Add or subtract $2 \pi k$ from each angle, where k is any integer.

Basic steps for solving $\tan x=a$:

1. Find one angle on the unit circle that satisfies the equation. If a is not a unit circle value, use $\tan ^{-1}(a)$ to find an angle. You don't need to find another angle, because unlike sine and cosine, tangent repeats at regular intervals.
2. Add or subtract multiples of $\boldsymbol{\pi}$ from each angle. (Tangent repeats every π instead of every 2π like sine and cosine).

Examples: Find all real numbers (that means radians) that satisfy each equation.
a) $\sin x=1$
b) $\cos x=0$
c) $\cos x=-1 / 2$
d) $\sin x=\sqrt{2} / 2$
e) $\tan x=-\sqrt{3}$
f) $\tan x=1$
g) $\sin x=-.4375$
h) $\cos x=.8913$

Examples: Find all angles in $\left[0^{\circ}, 360^{\circ}\right]$ that satisfy each equation
a) $\cos x=\sqrt{3} / 2$
b) $\tan x=-3.5$

Sometimes, you have to do a bit of algebra before you can use the techniques above.
a) Solve $2 \cos \alpha-1=0$ for $0 \leq \alpha \leq 2 \pi$.
b) Solve $3 \sin (\beta)+6=5 \sin (\beta)+7$ for $0^{\circ} \leq \beta \leq 360^{\circ}$.

Solving Multiple-Angle Equations

Often, equations involve expressions like $\sin 2 x, \cos 3 \alpha$, or $\tan (x / 2)$, all of which involve multiples of the variable rather than a single variable.

1. Solve for the multiple variable just as we would solve for a single variable. (eg. Solve for $2 x$)
2. Multiply or divide to get the single variable in the last step. (eg. Divide by 2 to solve for x)

Example: Find all solutions in degrees to $\sin 2 \alpha=\sqrt{3} / 2$.

Example: Find all solutions to $\tan (4 x)=1$ in the interval $(0, \pi)$.

Example: Find all real number solutions to $\cos (x / 2)=-1 / 2$.

Example: Find all solutions to $\sec (3 x)=2 \sqrt{3} / 3$ in the interval $\left(0^{\circ}, 360^{\circ}\right)$.

The Path of a Projectile

The distance d (in feet) traveled by a projectile fired from the ground with an angle of elevation θ is related to the initial velocity v_{0} (in $\mathrm{ft} / \mathrm{sec}$) by the equation $v_{0}^{2} \sin 2 \theta=32 d$. If the projectile is fired from the origin into the first quadrant, then the x - and y-coordinates (in feet) of the projectile at time t (in seconds) are given by $x=v_{0} t \cos \theta$ and $y=-16 t^{2}+v_{0} t \sin \theta$.

Example: A catapult is placed 100 feet from the castle wall, which is 35 feet high. A soldier wants a burning bale of hay to clear the top of the wall and land 50 feet inside the castle wall. If the initial velocity of the bale is $70 \mathrm{ft} / \mathrm{sec}$, then at what angle should the bale of hay be launched so that it will travel 150 feet and pass over the castle wall?

