The Inverse Trigonometric Functions

We can only talk about the inverse of a function on a part of its domain on which it is one-to-one (a part of the domain on which it passes the horizontal line test). Since the trigonometric functions are periodic, we must pick a part of their domain on which they are one-to-one in order to define the inverse functions. The domain of the inverse functions is the values of the sine, cosine, tangent, etc. and the range is the measures of one set of possible angles that have those specific sines, cosines, tangents, etc.

Domain $[-1,1]$
Range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Domain $(-\infty,-1] \cup[1, \infty)$
Range $\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$

Domain $[-1,1]$
Range $[0, \pi]$

Domain $(-\infty, \infty)$
Range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Domain ($-\infty, \infty$)
Range $(0, \pi)$

The inverse sine function is sometimes called the arc sine, and is abbreviated $\arcsin (x)$ or $\sin ^{-1}(x)$. Similarly, the other inverse functions are often called the arc cosine and arc tangent, abbreviated $\arccos (x)$ or $\cos ^{-1}(x)$ and $\arctan (x)$ or $\tan ^{-1} x$.

- $\sin ^{-1}(x)$ or $\arcsin (x)$ is the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x.
- $\cos ^{-1}(x)$ or $\arccos (x)$ is the angle in $[0, \pi]$ whose cosine is x.
- $\tan ^{-1}(x)$ or $\arctan (x)$ is the angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is x.

Example: Find the exact value of each expression without using a table or calculator.
a) $\sin ^{-1}\left(\frac{1}{2}\right)$
b) $\arcsin \left(-\frac{\sqrt{2}}{2}\right)$
c) $\tan ^{-1}(1)$
d) $\arccos \left(-\frac{1}{2}\right)$

Example: Find the measure of angle α.
a) $\sin \alpha=0.56,-90^{\circ} \leq \alpha \leq 90^{\circ}$
b) $\tan \alpha=-3,-\pi / 2<\alpha<\pi / 2$
c) $\cos \alpha=0.23,0^{\circ} \leq \alpha \leq 180^{\circ}$
d) $\cos \alpha=-0.82,0 \leq \alpha \leq \pi$

Inverses of the Reciprocal Trigonometric Functions

- $\csc ^{-1}(x)$ or $\operatorname{arccsc}(x)$ is the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose cosecant is x.
- $\sec ^{-1}(x)$ or $\operatorname{arcsec}(x)$ is the angle in $[0, \pi]$ whose secant is x.
- $\cot ^{-1}(x)$ or $\operatorname{arccot}(x)$ is the angle in $(0, \pi)$ whose cotangent is x.

Identities

- $\csc ^{-1}(x)=\sin ^{-1}\left(\frac{1}{x}\right)$
- $\sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)$
- $\cot ^{-1}(x)= \begin{cases}\tan ^{-1}(1 / x) & \text { for } x>0 \\ \tan ^{-1}(1 / x)+\pi & \text { for } x<0 \\ \pi / 2 & \text { for } x=0\end{cases}$
- $\cot ^{-1}(x)=\frac{\pi}{2}-\tan ^{-1}(x)$

Example: Find the exact value of each expression without using a table or calculator.
a) $\operatorname{arcsec}(-2)$
b) $\csc ^{-1}(\sqrt{2})$
c) $\operatorname{arccot}\left(\frac{\sqrt{3}}{3}\right)$

Example: Find the approximate value of each expression rounded to 4 decimal places.
a) $\operatorname{arccsc}(-1.4713)$
b) $\cot ^{-1}(-2.5)$
c) $\sec ^{-1}(4.328)$

Example: Find the exact value of each composition.
a) $\sin \left(\cot ^{-1}(-1)\right)$
b) $\sin ^{-1}\left(\sin \left(\frac{5 \pi}{4}\right)\right)$
c) $\arcsin \left(\cos \left(\frac{\pi}{6}\right)\right)$

Examples: Find the exact value of each composition.
a) $\sin \left(\cos ^{-1}\left(\frac{8}{17}\right)\right)$
b) $\sec \left(\operatorname{arccot}\left(\frac{5}{12}\right)\right)$

Example: Find an equivalent algebraic expression for $\sin (\arctan (x))$

Example: Find an equivalent algebraic expression for $\cot \left(\arccos \left(\frac{x}{5}\right)\right)$

