The Inverse Trigonometric Functions

We can only talk about the inverse of a function on a part of its domain on which it is one-to-one (a part of the domain on which it passes the horizontal line test). Since the trigonometric functions are periodic, we must pick a part of their domain on which they are one-to-one in order to define the inverse functions. The domain of the inverse functions is the values of the sine, cosine, tangent, etc. and the range is the measures of *one set of possible angles* that have those specific sines, cosines, tangents, etc.

The **inverse sine function** is sometimes called the **arc sine**, and is abbreviated $\arcsin(x)$ or $\sin^{-1}(x)$. Similarly, the other inverse functions are often called the **arc cosine** and **arc tangent**, abbreviated $\arccos(x)$ or $\cos^{-1}(x)$ and $\arctan(x)$ or $\tan^{-1} x$.

- $\sin^{-1}(x)$ or $\arcsin(x)$ is the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x.
- $\cos^{-1}(x)$ or $\arccos(x)$ is the angle in $[0,\pi]$ whose cosine is x.
- $\tan^{-1}(x)$ or $\arctan(x)$ is the angle $\ln\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ whose tangent is x.

Example: Find the exact value of each expression without using a table or calculator.

a)
$$\sin^{-1}\left(\frac{1}{2}\right)$$
 b) $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$ c) $\tan^{-1}(1)$ d) $\arccos\left(-\frac{1}{2}\right)$

- **Example:** Find the measure of angle α . a) $\sin \alpha = 0.56$, $-90^{\circ} \le \alpha \le 90^{\circ}$ b) $\tan \alpha = -3$, $-\pi/2 < \alpha < \pi/2$
- c) $\cos \alpha = 0.23, \ 0^{\circ} \le \alpha \le 180^{\circ}$ d) $\cos \alpha = -0.82, \ 0 \le \alpha \le \pi$

Inverses of the Reciprocal Trigonometric Functions

- $\csc^{-1}(x)$ or $\operatorname{arccsc}(x)$ is the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose cosecant is x.
- $\sec^{-1}(x)$ or $\operatorname{arcsec}(x)$ is the angle in $[0,\pi]$ whose secant is x.
- $\cot^{-1}(x)$ or $\operatorname{arccot}(x)$ is the angle in $(0,\pi)$ whose cotangent is x.

Identities

• $\csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right)$ • $\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right)$ • $\cot^{-1}(x) = \begin{cases} \tan^{-1}(1/x) & \text{for } x > 0\\ \tan^{-1}(1/x) + \pi & \text{for } x < 0\\ \pi/2 & \text{for } x = 0 \end{cases}$ • $\cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x)$

Example: Find the exact value of each expression without using a table or calculator.

a) $\operatorname{arcsec}(-2)$ b) $\operatorname{csc}^{-1}(\sqrt{2})$ c) $\operatorname{arccot}\left(\frac{\sqrt{3}}{3}\right)$

Example: Find the approximate value of each expression rounded to 4 decimal places. a) $\operatorname{arccsc}(-1.4713)$ b) $\operatorname{cot}^{-1}(-2.5)$ c) $\operatorname{sec}^{-1}(4.328)$

Example: Find the exact value of each composition.

a)
$$\sin(\cot^{-1}(-1))$$
 b) $\sin^{-1}\left(\sin\left(\frac{5\pi}{4}\right)\right)$ c) $\arcsin\left(\cos\left(\frac{\pi}{6}\right)\right)$

Examples: Find the exact value of each composition.

a)
$$\sin\left(\cos^{-1}\left(\frac{8}{17}\right)\right)$$
 b) $\sec\left(\arccos\left(\frac{5}{12}\right)\right)$

Example: Find an equivalent algebraic expression for sin(arctan(x))

Example: Find an equivalent algebraic expression for $\cot\left(\arccos\left(\frac{x}{5}\right)\right)$