Related Rates (Related Derivatives)
 Equations relating derivatives

Example: A cylindrical tank leaks water at 1 cubic meter/hour. What is the rate at which the height of the water is decreasing?

Example: A hot air balloon is rising and being pushed away by the wind. At what rate is the distance changing?

Related Rate Problem Strategy:

1. Draw a picture and name the variables and constants. Use tfor time. Assume all variables are differentiable functions of t.
2. Write down the numerical information (in terms of the symbols you have chosen).
3. Write down what we are asked to find (usually a rate, expressed as a derivative).
4. Write an equation that relates the variables. You may have to combine two or more equations to get a single equation that relates the variable whose rate you want to the variables whose rates you know.
5. Differentiate both sides of the equation implicitly with respect to \boldsymbol{t}. Then express the rate you want in terms of the rate and variables whose values you know.
6. Evaluate and interpret. Use known values to find the unknown rate.

Example 2 "A Rising Balloon"

Example: The base of a rectangular tub has length equal to one meter and width equal to four meters. The height of the tub is two meters. Water is flowing through a leak in the bottom of the tub at a rate of one cubic meter per hour. What is the rate at which the water level is decreasing?

Example 3: "A Highway Chase"

Example 4: Filling a conical tank

Exploration \#1 Sliding Ladder

