Connecting f^{\prime} and $f^{\prime \prime}$ with the graph of f

We already know that when:
$\mathrm{f}^{\prime}(\mathrm{c})=0 \mathrm{c}$ is a possible \max or \min
$\mathrm{f}^{\prime}(\mathrm{c})>0$ at c, f is increasing
$\mathrm{f}^{\prime}(\mathrm{c})<0$ at c, f is decreasing
Look at Figure 5.18

Check out: First Derivative Test for Local Extrema

If f^{\prime} changes sign from positive to negative at c then f has a local maximum value at c.
If f^{\prime} changes sign from negative to positive at c then f has a local minimum value at c .
If f^{\prime} does not change sign at c, then f has no local extreme value at c.
At a left endpoint a: If $\mathrm{f}^{\prime}<0$ for $\mathrm{x}>\mathrm{a}$, then f has a local maximum value at a . If $\mathrm{f}^{\prime}>0$ for $\mathrm{x}>\mathrm{a}$, then f has a local minimum value at a.
At a right endpoint b : If $\mathrm{f}^{\prime}<0$ for $\mathrm{x}<\mathrm{b}$, then f has a local minimum value at a . If $\mathrm{f}^{\prime}>0$ for $\mathrm{x}<\mathrm{b}$, then f has a local maximum value at a.

Look at figure 5.21
There is a nice definition of concavity.
Concave up when y^{\prime} is increasing
Concave down when y^{\prime} is decreasing
We are really talking about how y^{\prime} is changing.
Concave up when y" > 0
Concave down when y" < 0
Changes concavity when $y^{\prime \prime}=0$
Now look at page 212 figure 5.22 and 5.23

Points of Inflection

A point of inflection is a point where the graph of a function has a tangent line and where the concavity changes.

Critical Points

f^{\prime} (c) Does not exist (in the function this is at a corner, cusp, jump, not if the point is a vertical tangent)
$\mathrm{f}^{\prime}(\mathrm{c})=0$ possible \max or min
Remember that max or min can occur at an endpoint of the interval.
$\mathrm{f}^{\prime \prime}(\mathrm{c})=0$ point of inflection. Changes from concave up to down or down to up; but it must have a tangent line.

It is good to note that when a function is increasing (concave up) the tangent line is below the curve. When it is concave down, the tangent line is above the curve.

Example: $y=x^{3}-12 x-5$

$$
y^{\prime}=3 x^{2}-12 \quad y^{\prime \prime}=6 x
$$

Test the critical points:

$\mathrm{f}^{\prime}(2)=0$ and $\mathrm{f}^{\prime \prime}(2)>0$ then f has a local minimum at $\mathrm{x}=2$
$f^{\prime}(-2)=0$ and $f^{\prime \prime}(-2)<0$ then f has a local maximum at $\mathrm{x}=-2$
$\mathrm{f}^{\prime}(0)<0$ and $\mathrm{f}^{\prime \prime}(0)=0$ then point of inflection

Example: $y=x^{3}-12 x-5 \quad y^{\prime}=3 x^{2}-12 \quad y^{\prime \prime}=6 x$
Find intervals where function is increasing and decreasing

Intervals	$\mathrm{x}<-2$	$\mathrm{X}=-2$	$-2<\mathrm{x}<0$	$0<\mathrm{x}<2$	$\mathrm{X}=2$	$\mathrm{x}>2$
f^{\prime}	Positive	0	Negative	negative	0	positive
$\mathrm{f}^{\prime \prime}$	Negative	negative	Negative	positive	positive	positive
Function	Increasing	positive	decreasing	decreasing	negative	increasing

Second Derivative Test for Local Extrema

If $\mathrm{f}^{\prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{c})<0$ then f has a local maximum at $\mathrm{x}=\mathrm{c}$
If $\mathrm{f}^{\prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{c})>0$ then f has a local minimum at $\mathrm{x}=\mathrm{c}$
Example 8
Exploration 1 page 217
Learn about functions from Derivatives.
Exploration 2 page 218

Examples:
Use analytic methods to find the intervals on which the function is increasing, decreasing, concave up and concave down. Also find local extreme values, and inflection points.
3. $y=2 x^{4}-4 x^{2}+1$
51. f is continuous on $[0,3]$ and satisfies the following. Find the absolute extrema of f and where they occur; find any points of inflection, sketch a possible graph of f.

x	0	1	2	3
f	0	2	0	-2
f^{\prime}	3	0	does not exist	-3
$\mathrm{f}^{\prime \prime}$	0	-1	does not exist	0

x	$0<\mathrm{x}<1$	$1<\mathrm{x}<2$	$2<\mathrm{x}<3$
f	+	+	-
f^{\prime}	+	-	-
$\mathrm{f}^{\prime \prime}$	-	-	-

