Connecting f' and f" with the graph of f

We already know that when: f' (c) = 0 c is a possible max or min f' (c) > 0 at c, f is increasing f' (c) < 0 at c, f is decreasing Look at Figure 5.18

Check out: First Derivative Test for Local Extrema

If f' changes sign from positive to negative at c then f has a local maximum value at c.

If f' changes sign from negative to positive at c then f has a local minimum value at c.

If f' does not change sign at c, then f has no local extreme value at c.

At a left endpoint a: If f' < 0 for x>a, then f has a local maximum value at a. If f' > 0 for x > a, then f has a local minimum value at a.

At a right endpoint b: If f' < 0 for x<b, then f has a local minimum value at a. If f' > 0 for x < b, then f has a local maximum value at a.

Look at figure 5.21 **There is a nice definition of concavity.** Concave up when y' is increasing Concave down when y' is decreasing

We are really talking about how y' is changing. Concave up when y'' > 0Concave down when y'' < 0Changes concavity when y'' = 0

Now look at page 212 figure 5.22 and 5.23

Points of Inflection

A **point of inflection** is a point where the graph of a function has a tangent line and where the concavity changes.

Critical Points

f' (c) Does not exist (in the function this is at a corner, cusp, jump, not if the point is a vertical tangent) f' (c) = 0 possible max or min

Remember that max or min can occur at an endpoint of the interval.

f''(c) = 0 point of inflection. Changes from concave up to down or down to up; but it must have a tangent line.

It is good to note that when a function is increasing (concave up) the tangent line is below the curve. When it is concave down, the tangent line is above the curve.

Example: $y = x^3 - 12x - 5$ $y' = 3x^2 - 12$ y'' = 6x

Test the critical points:

f' (2) = 0 and f''(2)>0 then f has a local minimum at x = 2f' (-2) = 0 and f''(-2)<0 then f has a local maximum at x = -2f' (0) < 0 and f''(0)=0 then point of inflection

Example:	$y = x^3 - 12x - 5$
_	•

$$y' = 3x^2 - 12$$
 $y'' = 6x$

The more value where random is mereasing and decreasing						
Intervals	x<-2	X=-2	-2< x<0	0 <x<2< td=""><td>X=2</td><td>x>2</td></x<2<>	X=2	x>2
f	Positive	0	Negative	negative	0	positive
f″	Negative	negative	Negative	positive	positive	positive
Function	Increasing	positive	decreasing	decreasing	negative	increasing

Find intervals where function is increasing and decreasing

Second Derivative Test for Local Extrema

If f' (c) = 0 and f''(c)<0 then f has a local maximum at x = cIf f' (c) = 0 and f''(c)>0 then f has a local minimum at x = c

Example 8 Exploration 1 page 217

Learn about functions from Derivatives.

Exploration 2 page 218

Examples:

Use analytic methods to find the intervals on which the function is increasing, decreasing, concave up and concave down. Also find local extreme values, and inflection points.

3.
$$y=2x^4 - 4x^2 + 1$$

51. f is continuous on [0,3] and satisfies the following. Find the absolute extrema of f and where they occur; find any points of inflection, sketch a possible graph of f.

Х	0	1	2	3
f	0	2	0	-2
f	3	0	does not exist	-3
f"	0	-1	does not exist	0

X	0 <x<1< th=""><th>1<x<2< th=""><th>2<x<3< th=""></x<3<></th></x<2<></th></x<1<>	1 <x<2< th=""><th>2<x<3< th=""></x<3<></th></x<2<>	2 <x<3< th=""></x<3<>
f	+	+	-
f	+	-	-
f″	-	-	-