## Basic Trigonometric Identities

An equation is any mathematical statement involving an equal sign. There are three types of equations:

- Contradictions are equations that are never true, like $0=1$, or $x+5=x-7$.
- Conditional equations are equations that are sometimes true - true only for certain values of the variable(s) - like $x+5=7$, or $\sin \theta=\sqrt{3} / 2$.
- Identities are equations that are true for all possible values of the variables, like $x+y=y+x$, or $A^{2}-B^{2}=(A+B)(A-B)$ or $\csc \theta=1 / \sin \theta$.

Many trigonometric identities can be derived quickly from the $x, y, r$ definitions of the trigonometric functions.

## Reciprocal Identities :

## Tangent and Cotangent Quotient Identities :

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

## The Fundamental Identity

Remember that by definition, $\sin \theta=y / r, \cos \theta=x / r$, and by the Pythagorean Theorem, $x^{2}+y^{2}=r^{2}$.

$$
\sin ^{2} \theta+\cos ^{2} \theta=(-)^{2}+(-)^{2}
$$


$=\square+\square$
$=\square$

$$
=
$$

$$
=
$$

$\qquad$

The Fundamental (Pythagorean) Identity: $\sin ^{2} \theta+\cos ^{2} \theta=$ $\qquad$

Pythagorean Identities: We can use the fundamental identity to derive two more identities. Together, these three identities are called Pythagorean Identities because they are derived from the Pythagorean Theorem:
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}$

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
\end{aligned}
$$


$\qquad$ $+\quad=$ $\qquad$
$\qquad$ $+$ $\qquad$ $=$ $\qquad$

## Simplifying Expressions

We can use the identities above to simplify trigonometric expressions. One of the most common strategies is to start by rewriting the expression in terms of sines and/or cosines, then simplify from there.

Examples: Simplify the following.
a) $\frac{\tan x}{\sec x}$
b) $\sin \alpha+\cot \alpha \cos \alpha$
c) $\frac{\tan \theta \csc \theta}{\sec \theta}$

## Using Identities to Find Function Values

We know how to draw a triangle to find missing function values, but we can also find missing function values using identities.

Example: If $\tan \alpha=-2 / 3$ and $\alpha$ is in quadrant IV, use identities to find the values of the remaining five trigonometric functions.

## Multiplying and Factoring Polynomials Involving Trigonometric Functions

We must often multiply or factor expressions involving trigonometric functions when we simplify or verify identities or solve trigonometric equations.

## Examples:

a) Multiply $(1+\tan x)(1-\tan x)$
b) Multiply $(2 \sin x+1)^{2}$
c) Factor $2 \sin x \cos x+\cos x$
d) Factor $\sec ^{2} x-\tan ^{2} x$
e) Factor $\sin ^{2} x+\sin x-2$
f) Factor $3 \cos ^{2} x-7 \cos x-6$

## Odd and Even Identities

Odd functions have graphs that are symmetric with respect to the $\qquad$ .
Even functions have graphs that are symmetric with respect to the $\qquad$ .

In odd functions, $f(-x)=$ $\qquad$ . In even functions, $f(-x)=$ $\qquad$ -.

Sketch the graphs of the six parent functions below, and decide which are odd and which are even.

$$
f(x)=\sin x \quad f(x)=\cos x \quad f(x)=\tan x \quad f(x)=\csc x \quad f(x)=\sec x \quad f(x)=\cot x
$$

Fill in the blanks to complete the odd and even identities:

$$
\begin{aligned}
& \cos (-x)= \\
& \sec (-x)=
\end{aligned}
$$

$$
\sin (-x)=
$$

$$
\begin{aligned}
& \tan (-x)= \\
& \cot (-x)=
\end{aligned}
$$

$\csc (-x)=$ $\qquad$

Examples: Simplify the following.
a) $\csc (-x) \tan (-x)$
b) $\frac{1}{1+\cos (-x)}+\frac{1}{1-\cos x}$
c) $\tan ^{2}(-x)-\frac{\csc ^{2} x}{\cot ^{2} x}$

