Graphing Secant, Cosecant, Tangent, and Cotangent Functions

Remember, $\sec x = \frac{1}{\cos x}$ and $\csc x = \frac{1}{\sin x}$.

- We aren't allowed to divide by 0. This means:
 - Whenever $\cos x = 0$, $\sec x$ is undefined, and whenever $\sin x = 0$, $\csc x$ is undefined.
 - Places where $\cos x = 0$ and $\sec x$ is undefined:
 - Places where $\sin x = 0$ and $\csc x$ is undefined:
 - The graphs of $y = \sec x$ and $y = \csc x$ have vertical asymptotes at these locations.
 - To Find the Equations of the Asymptotes:
 - Start with any *x*-value where the function is undefined.
 Add this value to *k* times the distance between the asymptotes.
 x = asymptote + (distance between asymptotes) · *k*

Graphing Secant Functions

- To graph $y = a \sec \left[b(x-c) \right] + d$:
 - Sketch the graph of $y = a \cos \left[b(x-c) \right] + d$.
 - Wherever the graph of the cosine function crosses its center point, draw a vertical asymptote.
 - The local maxima of the graph of the cosine function become local minima on the graph of the secant function with $y \rightarrow \infty$ as x approaches the asymptotes on either side. The local minima of the graph of the cosine function become local maxima on the graph of the secant function with $y \rightarrow -\infty$ as x approaches the asymptotes on either side.

Key points on the graph of $y = \sec x$:

x	0	$\pi/2$	π	$3\pi/2$	2π
$y = \sec x$	1	undef.	-1	undef.	1

Graphing Cosecant Functions

- To graph $y = a \csc [b(x-c)] + d$:
 - Sketch the graph of $y = a \sin[b(x-c)] + d$.
 - Wherever the graph of the sine function crosses its center point, draw a vertical asymptote.
 - The local maxima of the graph of the sine function become local minima on the graph of the cosecant function with $y \to \infty$ as x approaches the asymptotes on either side. The local minima of the graph of the sine function become local maxima on the graph of the cosecant function with $y \to -\infty$ as x approaches the asymptotes on either side.

Key points on the graph of $y = \csc x$:

x	0	$\pi/2$	π	$3\pi/2$	2π
$y = \csc x$	undef.	1	undef.	-1	undef.

Examples: Graph the following functions. Find the period, asymptotes, and range of each. a) $y = 3\sec(2x)$ b) $y = \csc\left(x - \frac{\pi}{4}\right) + 2$

c)
$$y = \sec\left(\frac{1}{2}x + \frac{\pi}{6}\right)$$
 d) $y = 2\csc\left(\frac{\pi}{4}x + \frac{3\pi}{4}\right)$

Let (a,b) be coordinates of points on the unit circle. For any given angle x, $\tan x = b/a$. This means that $y = \tan x$ is undefined whenever a = 0. For any given angle x, $\cot x = a/b$. This means that $y = \cot x$ is undefined whenever b = 0. Notice that it takes π radians for the values of the tangent and cotangent to make one complete cycle.

Graphing Tangent Functions:

The domain of $y = \tan x$ is the set of all real numbers except numbers of the form $\pi/2 + k\pi$, where *k* is an integer. The equations of the vertical asymptotes are $x = \pi/2 + k\pi$, where *k* is an integer.

Key points on the graph of $y = \tan x$:

To graph $y = a \tan[b(x-c)] + d$:

- 1. Start with the three key points on the graph of $y = \tan x$ and the equations of the asymptotes.
- 2. Find three key points and the asymptotes for $y = a \tan \left[b(x-c) \right] + d$ by:
 - a. dividing each *x*-coordinate by *b* and adding *c*. (Treat the equations of the asymptotes like x-coordinates.)
 - b. multiplying each *y*-coordinate by *a* and adding *d*.
- 3. Sketch one cycle of $y = a \tan[b(x-c)] + d$ through the three new points and approaching the new asymptotes.
- **★** The period of $y = a \tan[b(x-c)] + d$ and $y = a \cot[b(x-c)] + d$ is π/b rather than $2\pi/b$.

Graphing Cotangent Functions:

The domain of $y = \cot x$ is the set of all real numbers except numbers of the form $k\pi$, where k is an integer. The equations of the vertical asymptotes are $x = k\pi$, where k is an integer.

Key points on the graph of $y = \cot x$:

To graph $y = a \cot[b(x-c)] + d$:

- 1. Start with the three key points on the graph of $y = \cot x$ and the equations of the asymptotes.
- 2. Find three key points and the asymptotes for $y = a \cot [b(x-c)] + d$ by:
 - a. dividing each *x*-coordinate by *b* and adding *c*. (Treat the equations of the asymptotes like x-coordinates.)
 - b. multiplying each *y*-coordinate by *a* and adding *d*.
- 3. Sketch one cycle of $y = a \cot[b(x-c)] + d$ through the three new points and approaching the new asymptotes.

Examples: Graph the following functions. Find the period and the equations of the asymptotes of each.

$$y = \tan\left(\frac{1}{2}x\right) \qquad \qquad y = \frac{1}{2}\cot\left(x + \frac{\pi}{3}\right)$$

$$y = 3\tan\left(2x + \frac{\pi}{2}\right) + 1$$

$$y = 2\cot\left[3\left(x - \frac{\pi}{6}\right)\right] - 1$$