Graphing Secant, Cosecant, Tangent, and Cotangent Functions

Remember, $\sec x=\frac{1}{\cos x}$ and $\csc x=\frac{1}{\sin x}$.

- We aren't allowed to divide by 0 . This means:
- Whenever $\cos x=0, \sec x$ is undefined, and whenever $\sin x=0, \csc x$ is undefined.
- Places where $\cos x=0$ and $\sec x$ is undefined: \qquad
- Places where $\sin x=0$ and $\csc x$ is undefined: \qquad
- The graphs of $y=\sec x$ and $y=\csc x$ have vertical asymptotes at these locations.
- To Find the Equations of the Asymptotes:
- Start with any x-value where the function is undefined.

Add this value to k times the distance between the asymptotes.
$x=$ asymptote $+($ distance between asymptotes $) \cdot k$

Graphing Secant Functions

- To graph $y=a \sec [b(x-c)]+d$:
- Sketch the graph of $y=a \cos [b(x-c)]+d$.
- Wherever the graph of the cosine function crosses its center point, draw a vertical asymptote.
- The local maxima of the graph of the cosine function become local minima on the graph of the secant function with $y \rightarrow \infty$ as x approaches the asymptotes on either side. The local minima of the graph of the cosine function become local maxima on the graph of the secant function with $y \rightarrow-\infty$ as x approaches the asymptotes on either side.

Key points on the graph of $\boldsymbol{y}=\sec \boldsymbol{x}$:

x	0	$\pi / 2$	π	$3 \pi / 2$	2π
$y=\sec x$	1	undef.	-1	undef.	1

Graphing Cosecant Functions

- To graph $y=a \csc [b(x-c)]+d$:
- Sketch the graph of $y=a \sin [b(x-c)]+d$.
- Wherever the graph of the sine function crosses its center point, draw a vertical asymptote.
- The local maxima of the graph of the sine function become local minima on the graph of the cosecant function with $y \rightarrow \infty$ as x approaches the asymptotes on either side. The local minima of the graph of the sine function become local maxima on the graph of the cosecant function with $y \rightarrow-\infty$ as x approaches the asymptotes on either side.

Key points on the graph of $\boldsymbol{y}=\csc \boldsymbol{x}$:

x	0	$\pi / 2$	π	$3 \pi / 2$	2π
$y=\csc x$	undef.	1	undef.	-1	undef.

Examples: Graph the following functions. Find the period, asymptotes, and range of each.
a) $y=3 \sec (2 x)$
b) $y=\csc \left(x-\frac{\pi}{4}\right)+2$
c) $y=\sec \left(\frac{1}{2} x+\frac{\pi}{6}\right)$
d) $y=2 \csc \left(\frac{\pi}{4} x+\frac{3 \pi}{4}\right)$

Let (a, b) be coordinates of points on the unit circle. For any given angle $x, \tan x=b / a$. This means that $y=\tan x$ is undefined whenever $a=0$. For any given angle $x, \cot x=a / b$. This means that $y=\cot x$ is undefined whenever $b=0$. Notice that it takes π radians for the values of the tangent and cotangent to make one complete cycle.

Graphing Tangent Functions:

The domain of $y=\tan x$ is the set of all real numbers except numbers of the form $\pi / 2+k \pi$, where k is an integer. The equations of the vertical asymptotes are $x=\pi / 2+k \pi$, where k is an integer.

Key points on the graph of $y=\tan x$:

x	$-\pi / 2$	$-\pi / 4$	0	$\pi / 4$	$\pi / 2$
$y=\tan x$	undef.	-1	0	1	undef.

To graph $y=a \tan [b(x-c)]+d$:

1. Start with the three key points on the graph of $y=\tan x$ and the equations of the asymptotes.
2. Find three key points and the asymptotes for $y=a \tan [b(x-c)]+d$ by:
a. dividing each x-coordinate by b and adding c. (Treat the equations of the asymptotes like x-coordinates.)
b. multiplying each y-coordinate by a and adding d.
3. Sketch one cycle of $y=a \tan [b(x-c)]+d$ through the three new points and approaching the new asymptotes.
\star The period of $y=a \tan [b(x-c)]+d$ and $y=a \cot [b(x-c)]+d$ is π / b rather than $2 \pi / b$.

Graphing Cotangent Functions:

The domain of $y=\cot x$ is the set of all real numbers except numbers of the form $k \pi$, where k is an integer. The equations of the vertical asymptotes are $x=k \pi$, where k is an integer.

Key points on the graph of $\boldsymbol{y}=\cot \boldsymbol{x}$:

x	0	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π
$y=\cot x$	undef.	1	0	-1	undef.

To graph $y=a \cot [b(x-c)]+d$:

1. Start with the three key points on the graph of $y=\cot x$ and the equations of the asymptotes.
2. Find three key points and the asymptotes for $y=a \cot [b(x-c)]+d$ by:
a. dividing each x-coordinate by b and adding c. (Treat the equations of the asymptotes like x-coordinates.)
b. multiplying each y-coordinate by a and adding d.
3. Sketch one cycle of $y=a \cot [b(x-c)]+d$ through the three new points and approaching the new asymptotes.

Examples: Graph the following functions. Find the period and the equations of the asymptotes of each. $y=\tan \left(\frac{1}{2} x\right)$

$$
y=\frac{1}{2} \cot \left(x+\frac{\pi}{3}\right)
$$

$$
y=2 \cot \left[3\left(x-\frac{\pi}{6}\right)\right]-1
$$

