4.5 Homework

Find the exact value of each trigonometric function without using a calculator.

- $1. \cos 0$
- 2. $\cot(\pi/6)$
- 3. $\sin(-\pi/4)$
- 4. $sec(\pi/3)$
- 5. $\cos(\pi/2)$

- 6. $\tan(-\pi)$ 7. $\csc(-5\pi/6)$ 8. $\sec(2\pi/3)$ 9. $\cos(-3\pi/4)$ 10. $\sin(3\pi/2)$

Find the coordinates of each point after it is moved $\pi/3$ units to the left and 4 units down.

11.
$$(\pi/4,2)$$

12.
$$(-\pi/2, -1)$$

Find the coordinates of each point after it is moved $\pi/6$ units to the right and 2 units up.

13.
$$(\pi/3, -1)$$

14.
$$(-\pi, 5)$$

Determine the midpoint of the two given points.

15.
$$(0,-2)$$
 and $(\pi/3,-2)$

16.
$$(\pi/6,1)$$
 and $(\pi/2,1)$

Determine the coordinates of points P, Q, R, and S on each given sine wave.

18.

For each function, state the amplitude, phase shift, period, vertical shift (midline) and range.

20.
$$y = -3\sin x$$

amplitude_____

phase shift_____

period_____

midline_____

range_____

$$22. \quad f(x) = \sin \left[2\left(x - \frac{\pi}{2}\right) \right]$$

amplitude_____

phase shift_____

period_____

midline_____

range_____

24.
$$f(x) = \sin(x + \pi/4) + 2$$

amplitude_____

phase shift_____

period_____

midline_____

range_____

$$21. \quad y = \cos\left(x - \pi/3\right)$$

amplitude_____

phase shift_____

period_____

midline

range____

23.
$$y = -\sin(x) - 1$$

amplitude_____

phase shift_____

period_____

midline_____

range____

25.
$$f(x) = 2\cos(x-\pi/6)+1$$

amplitude

phase shift_____

period_____

midline_____

26. $y = 3\cos(x + 2\pi/3) - 2$

amplitude_____

phase shift_____

period_____

midline_____

range_____

27. $f(x) = -2\sin(x - \pi/3) + 1$

amplitude_____

phase shift_____

period_____

midline_____

range____

Write an equation of the requested form whose graph is the given sine wave.

28.
$$y = a \sin(x-c) + d$$

29.
$$y = a\cos(x-c) + d$$

Write the equation of each sine wave in its final position.

30. The graph of $y = \sin(x)$ is reflected over the *x*-axis, shifted $\pi/9$ units to the left, then translated down 3 units.

31. The graph of $y = \cos(x)$ is reflected over the *x*-axis, vertically stretched by a factor of 3, shifted $\pi/4$ units to the left, translated down 5 units.

Determine the vertical shift (midline), amplitude, phase shift, period, and range for each function. Make a table with the five key points and sketch at least one cycle of the graph with the five key points from the table. Label your axes clearly

midline_____

amplitude_____

phase shift_____

period_____

range_____

33.
$$f(x) = \frac{1}{2}\cos(x)$$

midline_____

amplitude_____

phase shift_____

period_____

$$34. \quad f(x) = \cos\left(x - \frac{\pi}{3}\right)$$

midline_____

amplitude_____

phase shift_____

period_____

range_____

$$35. \quad f(x) = \sin\left(x + \frac{\pi}{4}\right) + 2$$

midline_____

amplitude_____

phase shift_____

period_____

36.
$$f(x) = 2\cos\left(x + \frac{\pi}{6}\right) + 1$$

midline_____

amplitude_____

phase shift_____

period_____

range_____

37.
$$f(x) = \cos(4x) + 2$$

midline_____

amplitude_____

phase shift_____

period_____

 $38. \quad f(x) = 2 - \sin\left(\frac{x}{4}\right)$

midline_____

amplitude_____

phase shift_____

period_____

range_____

39. $f(x) = -\frac{1}{2}\sin\left[3\left(x - \frac{\pi}{6}\right)\right] - 1$

midline_____

amplitude_____

phase shift_____

period_____

Write two equations to describe each graph – one of the form $y = a \sin[b(x-c)] + d$ and one of the form $y = a \cos[b(x-c)] + d$.

40.

41.

Solve each problem.

42. What is the frequency of the sine wave determined by $y = \cos(0.001\pi x)$, where x is the time in seconds?

43. If the period of a sine wave is 0.025 hour, then what is the frequency?

44. If the frequency of a sine wave is 40,000 cycles per second, then what is the period?

- 45. The volume of air v in cubic centimeters in the lungs of a certain distance runner is modeled by the equation $v = 400\sin(60\pi t) + 900$, where t is the time in minutes.
 - a. What are the maximum and minimum volumes of air in the runner's lungs?
 - b. How many breaths does the runner take per minute?

46. Scientists use the same types of terms to describe ocean waves that we use to describe sine waves. The *wave period* is the time between crests and the *wavelength* is the distance between crests. The *wave height* is the vertical distance from the trough to the crest. The accompanying figure shows a *swell* in a coordinate system. Write an equation for the swell, assuming that its shape is that of a sinusoid.

Review:

- 47. Find the smallest positive angle that is coterminal with $-23\pi/6$.
- 48. The terminal side of the angle β in standard position passes through the point (-3,9). Find the exact values of $\sin \beta$, $\cos \beta$, $\tan \beta$, $\csc \beta$, $\sec \beta$, and $\cot \beta$.

49. A central angle of 60° intercepts an arc on a circle with an arc length of 5 cm. What is the radius of the circle?