Derivatives of Exponential and Logarithmic Functions

When we reviewed exponentials and logarithms in chapter 1 we mentioned that logs and exponential with base e come up a great deal. e is extremely unique, not just because it shows up in nature; but for several other reasons. One we will examine now.

Recall $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ we first showed this using a graph.
Consider $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \quad$ Graph
This means something remarkable when we find the derivative of e^{x}.
$\frac{d}{d x}\left(e^{x}\right)=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\frac{e^{x} \cdot e^{h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}$
$=\lim _{h \rightarrow 0} e^{x} \frac{\left(e^{h}-1\right)}{h}=\lim _{h \rightarrow 0} e^{x} \cdot \lim _{h \rightarrow 0} \frac{\left(e^{h}-1\right)}{h}=e^{x} \cdot 1=e^{x}$
$\frac{d}{d x}\left(e^{x}\right)=e^{x}$
The function is its own derivative!
In a general form we apply the chain rule and get
$\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}$
It would be nice to differentiate other exponential functions. Let's try a clever trick. Knowing
$\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad$ and $\quad a^{x}=e^{x \ln a}$
$\frac{d}{d x} e^{x \ln a}=e^{x \ln a}(\ln a)=e^{\ln a^{x}} \cdot \ln a=a^{x} \ln a$
$\frac{d}{d x} a^{x}=a^{x} \ln a$
In general: $\frac{d}{d x} a^{u}=a^{u} \ln a \frac{d u}{d x}$

Examples:

$$
\begin{array}{ll}
y=2 e^{x} & \frac{d}{d x}=2 e^{x} \\
y=e^{2 x} & \frac{d}{d x}=e^{2 x} \cdot 2 \quad \frac{d}{d x}=2 e^{2 x} \\
y=8^{x} & y^{\prime}=8^{x} \ln 8 \\
y=x^{\pi} & y^{\prime}=\pi(x)^{\pi-1} \\
y=3^{\csc (x)} & y^{\prime}=-3^{\csc (x)} \ln 3(\csc x \cot x)
\end{array}
$$

That takes care of exponentials, not that they are all that easy. What about logarithms. Let's do another clever move.
$y=\ln (x)$ $e^{y}=e^{\ln (x)} \quad e^{y}=x$
$\frac{d}{d x} e^{y}=\frac{d}{d x} x$
$e^{y} \frac{d y}{d x}=1$
$\frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x}$
so $\frac{d}{d x} \ln (x)=\frac{1}{x}$
In general: $\quad \frac{d}{d x} \ln (u)=\frac{1}{u} \frac{d u}{d x}$

Derive a formula for $\frac{d}{d x} \log _{a} x$
How could this be rewritten with functions you already know? Use Change of base formula:

$$
\frac{d}{d x} \frac{\ln x}{\ln a}=\frac{1}{\ln a} \frac{d}{d x} \ln x=\frac{1}{\ln a} \cdot \frac{1}{x}=\frac{1}{x \ln a}
$$

In general $\frac{d}{d x} \log _{a} u=\frac{1}{u \ln a} \frac{d u}{d x}$
Examples:
15. $y=\ln \left(x^{2}\right) \quad y^{\prime}=\frac{1}{x^{2}} 2 x=\frac{2}{x}$
16. $y=(\ln x)^{2} \quad y^{\prime}=2 \ln x \frac{1}{x}$
21. $y=\log _{4} x^{2} \quad y^{\prime}=\frac{1}{x^{2} \ln 4} 2 x=\frac{2}{x \ln 4}$
24. $y=\frac{1}{\log _{2} x}$

$$
\begin{aligned}
& y^{\prime}=\left(\log _{2} x\right)^{-1}=-1\left(\log _{2} x\right)^{-2} \frac{1}{x \ln 2}=\frac{-1}{\left(\log _{2} x\right)^{2} x \ln 2} \\
& =\frac{-1}{x(\ln 2)\left(\log _{2} x\right)^{2}}=\frac{-1 \ln 2}{x(\ln x)^{2}}
\end{aligned}
$$

Exploration 1

Example 8

We need to revisit the power rule one more time
If u is a positive differentiable function and n is any real number then $\frac{d}{d x} u^{n}=n u^{n-1} \frac{d u}{d x}$

Example 5

Example 6

Example 7

Logarithmic Differentiation : do when both base and exponent are functions of x .
\#47. $y=x^{\ln x}$

