4.4 notes calculus
Derivatives of Exponential and Logarithmic Functions

When we reviewed exponentials and logarithms in chapter 1 we mentioned that logs and exponential with
base e come up a great deal. e is extremely unique, not just because it shows up in nature; but for several
other reasons. One we will examine now.
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This means something remarkable when we find the derivative of €.
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The function is its own derivative!
In a general form we apply the chain rule and get

It would be nice to differentiate other exponential functions. Let’s try a clever trick. Knowing
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That takes care of exponentials, not that they are all that easy. What about logarithms. Let’s do another
clever move.
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How could this be rewritten with functions you already know?
Use Change of base formula:
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We need to revisit the power rule one more time

If u is a positive differentiable function and n is any real number then
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Logarithmic Differentiation : do when both base and exponent are functions of x.
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