Derivatives of Inverse Trigonometric Functions

Recall from our chapter 1 review that the inverse of a function can be obtained by switching x and y and solving for y . An inverse is a reflection of the function over the line $\mathrm{y}=\mathrm{x}$. Consider Figure 4.12 (The graphs of a function and its inverse; notice that the tangent lines have reciprocal slopes.)

Think of this....the slope of the function y is the reciprocal of the slope of its inverse, because you switch the x and $\mathrm{y} . .$. .
So it is with derivatives....
The derivative idea should make sense because if we switched x and y to get y^{-1} then dy should be dx and $\mathrm{dx} \rightarrow$ dy. $\frac{d y^{-1}}{d x}=\frac{d x}{d y}$
Example: if
$f(\mathrm{a})=\mathrm{b}$ and $f^{\prime}(a)=c$ and if $g(x)=f^{-1}(x)$, then $g^{\prime}(b)=\frac{1}{c}$
Example: $f(2)=5$ and $f^{\prime}(2)=10$ and if $g(x)=f^{-1}(x)$,then $g^{\prime}(5)=\frac{1}{10}$
Notice further that if the function is smooth and continuous f^{-1} will be smooth and continuous. We do have to be concerned with the domain!

Example: $\mathrm{f}(\mathrm{x})=\sin (\mathrm{x})$

$$
f^{-1}(x)=\sin ^{-1} x \text { Restricted domain }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

Consider $y=\sin ^{-1}$ (x) what is dy/dx?
Graph the function. It has a vertical tangent, but it should be differentiable everywhere else.
Find $\frac{d y}{d x} \quad$ if $\quad y=\sin ^{-1}(x)$
$\sin y=x \quad \cos y \bullet \frac{d y}{d x}=1$
$\frac{d y}{d x}=\frac{1}{\cos y}$

We need this to be a function of x , not y .
We now do something very clever.
$\cos ^{2} y=1-\sin ^{2} y \Rightarrow \cos y=\sqrt{1-\sin ^{2} y}$
$\operatorname{Sin}(y)=x$ coordinate
So $\cos y=\sqrt{1-x^{2}}$ We can do this because cos y is always positive in the domain
$\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}$

If u is a differentiable function of x, we apply the chain rule and get
$\frac{d}{d x} \sin ^{-1} u=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x} \quad|u|<1$
Examples: $y=\sin ^{-1}(2 x) \quad$ Find $\frac{d y}{d x}$

$$
y=\sin ^{-1}(1-t) \quad \text { Find } \frac{d y}{d t}
$$

$$
\begin{aligned}
& \frac{d}{d x} \tan ^{-1} u=\frac{1}{1+u^{2}} \frac{d u}{d x} \\
& \frac{d}{d x} \sec ^{-1} u=\frac{1}{|u| \sqrt{u^{2}-1}} \frac{d u}{d x} \quad|u|>1
\end{aligned}
$$

The derivatives of the cofunctions are negatives of one another.
Inverse Function - Inverse Cofunction Identities
Given the cofunctions find the derivatives.
$\cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x$

$$
\frac{d}{d x} \cos ^{-1} x=
$$

$\cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x \quad \frac{d}{d x} \cot ^{-1} x=$
$\csc ^{-1} x=\frac{\pi}{2}-\sec ^{-1} x$

$$
\frac{d}{d x} \csc ^{-1} x=
$$

Calculator Conversion Identities

$\sec ^{-1} x=\cos ^{-1}(1 / x)$
$\cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1}(x)$
$\csc ^{-1} x=\sin ^{-1}(1 / x)$
\#1
$y=\cos ^{-1}\left(x^{2}\right)$
cofunction with $\sin ^{-1}$
$\frac{d}{d x} \sin ^{-1} u=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$ so $\frac{d}{d x} \cos ^{-1} u=\frac{-1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
$\frac{d y}{d x}=\frac{-1}{\sqrt{1-\left(x^{2}\right)^{2}}} 2 x=\frac{-2 x}{\sqrt{1-x^{4}}} \quad|x|<1$

