\qquad period \qquad date \qquad
\qquad

4.2 Homework

Perform each conversion. Round approximate answers to the nearest tenth.

1. $30 \mathrm{rev} / \mathrm{min}=\ldots \mathrm{rad} / \mathrm{min}$
2. $150 \mathrm{rev} / \mathrm{sec}=$ \qquad $\mathrm{rev} / \mathrm{hr}$
3. $180 \mathrm{rev} / \mathrm{sec}=\ldots \mathrm{rad} / \mathrm{hr}$
4. $3000 \mathrm{rad} / \mathrm{hr}=\ldots \mathrm{rev} / \mathrm{sec}$
5. $45 \mathrm{mph}=$ \qquad $\mathrm{ft} / \mathrm{sec}$

A windmill for generating electricity like the one shown at the right has a blade that is $\mathbf{3 0}$ feet long. Depending on the wind, it rotates at various velocities. In each case, find the angular velocity in rad/sec (to the nearest tenth) and the linear velocity in miles/hr for a point on the tip of the blade.
6. $500 \mathrm{rev} / \mathrm{sec}$

7. $20,000 \mathrm{rev} /$ day
8. Determine the linear velocity in miles/hour for a point on the edge of a saw blade with a diameter of 6 inches if the blade is rotating at 2700 revolutions per minute.
9. Find the linear velocity in miles per hour of the tip of a 20 -inch lawnmower blade spinning at $2800 \mathrm{rev} / \mathrm{min}$.
10. The blade on a table saw rotates at 3450 revolutions per minute. How much faster (in $\mathrm{ft} / \mathrm{sec}$) does a 12 -in-diameter blade strike a piece of wood than a 10 -in-diameter blade?
11. If a car runs over a nail at $55 \mathrm{mi} / \mathrm{hr}$ and the nail is lodged in the tire tread 13 in . from the center of the wheel, then what is the angular velocity of the nail in radians per hour?
12. A belt connects two pulleys with radii 3 in . and 5 in . as shown in the accompanying diagram. The velocity of point A on the belt is $10 \mathrm{ft} / \mathrm{sec}$. What is the linear velocity $(\mathrm{ft} / \mathrm{sec})$ and the angular velocity $(\mathrm{rad} / \mathrm{sec})$ for point B ? What is the linear velocity ($\mathrm{ft} / \mathrm{sec}$) and the angular velocity ($\mathrm{rad} / \mathrm{sec}$) for point C ?

Hint: Every point on the belt is moving at the same speed.

