Chain Rule

We know how to differentiate lots of functions, polynomials, trig functions, rational functions, etc., but we have not done derivatives of composites.

How do we differentiate $\mathrm{y}=\sin \left(\mathrm{x}^{2}+\mathrm{x}\right)$?
We actually use a new rule for differentiation which is the most widely used rule in calculus, the chain rule.

Suppose we make an easy composite function. $\mathrm{y}=3\left(\mathrm{x}^{2}+4 \mathrm{x}\right)$
This could be made up of $y=3(u)$ and $u=x^{2}+4 x$ so $y=3 x^{2}+12 x$
$\frac{d y}{d x}=6 x+12 \quad \frac{d y}{d u}=3 \quad \frac{d u}{d x}=2 x+4$
$\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$

Here is another example:

$y=9 x^{4}+6 x^{2}+1$
$y=u^{2}$ and $u=3 x^{2}+1$
$d y / d u=2 u$ and $d u / d x=6 x$
so $y^{\prime}=2\left(3 x^{2}+1\right) \cdot 6 x=\left(6 x^{2}+2\right) \cdot 6 x=36 x^{3}+12 x \quad$ Does this match with the derivative of $9 x^{4}+6 x^{2}+1$?
How can we write this as a rule that will be easier to work with? As it turns out, the previous rule is actually the notation that Leibniz worked out, but we generally use a method that Newton developed that relates to typical composite notation.

The Chain Rule:

If f is differentiable at the point $\mathrm{u}=\mathrm{g}(\mathrm{x})$ and g is differentiable at x , then the composite function $(\mathrm{f} \text { o } \mathrm{g})^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{g}(\mathrm{x})) \cdot \mathrm{g}^{\prime}(\mathrm{x})$

In Leibniz notation if $\mathrm{y}=\mathrm{f}(\mathrm{u})$ and $\mathrm{u}=\mathrm{g}(\mathrm{x})$, then $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$ where dy/du is evaluated at $\mathrm{u}=\mathrm{g}(\mathrm{x})$.
Remember this using the words "outside" and "inside".
The derivative of the outside, leave the inside alone, times the derivative of the inside.
If $\mathrm{y}=\sin \left(\mathrm{x}^{2}+\mathrm{x}\right) \quad \mathrm{f}(\mathrm{x})=\sin (\mathrm{x}) \quad$ "outside" and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x} \quad$ "inside"
Then $\mathrm{y}^{\prime}=$ derivative of the outside function evaluated at the inside function left alone times the derivative of the inside
$y=\sin \left(x^{2}+x\right)$
$y^{\prime}=\cos \left(x^{2}+x\right) \cdot(2 x+1)$
Another example:
$y=2(3 x-5) \quad$ outside: $y=2 u \quad$ inside: $u=3 x-5$
$y^{\prime}=2 \quad u^{\prime}=3 \quad y^{\prime}$ of u times $u^{\prime}=2(3)=6 . \quad$ Does this match with the derivative of $6 x-10$?

After some practice, the rule becomes pretty easy to use.
Example Differentiate: $\sin (2 x+1)$
Outside derivative $\cos (2 \mathrm{x}+1)$
Inside derivative 2
Outside times inside: $2 \cos (2 \mathrm{x}+1)$
\#3 $\quad y=\cos (\sqrt{3} \cdot x)$
$\frac{d}{d x}$ outside $\rightarrow-\sin (\sqrt{3} \cdot x) \quad \frac{d}{d x}$ inside $\rightarrow \sqrt{3} \quad y^{\prime}=-\sqrt{3} \sin (\sqrt{3} \cdot x)$
We can also apply the chain rule repeatedly
Consider: $y=\sin ^{4}(3 x)=(\sin (3 x))^{4}=4(\sin (3 x))^{3} \cdot \cos (3 x) \cdot 3=12 \sin ^{3}(3 x) \cos (3 x)$
\#22 $y=(1+\cos 2 x)^{2}$
$2(1+\cos 2 x)(-\sin 2 x) \cdot 2=-4(\sin 2 x)(1+\cos 2 x)$

Example 3

Slopes of Parametrized Curves

Parametric curves still have tangents so they should have derivatives. Using the chain rule we can find dy/dx parametrically. If all three derivatives exist and $\mathrm{dx} / \mathrm{dt} \neq 0$, then $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$

Example: say $\mathrm{x}=\sin \mathrm{t} \quad \mathrm{y}=\cos \mathrm{t} \quad 0 \leq t \leq 2 \pi$
Find dy/dx.
Find the slope of the tangent at $t=\pi / 4$.
Find the equation of the normal line at $t=\pi / 4$.

Because powers are used so often and polynomials are so easy to differentiate, we have what's called "The Power Chain Rule".
It is easy to see by examples.

Example

$y=\sin ^{2}(3 x)$
$2 \sin (3 x) \cdot 3 \cos (3 x)$

$$
\begin{array}{ll}
y=\left(x^{3}-2 x\right)^{4} & u^{4} \\
4\left(x^{3}-2 x\right)^{3}\left(3 x^{2}-2\right)
\end{array}
$$

2u $\cdot \mathrm{du} / \mathrm{dx}$
If we think of these as $u^{n} \rightarrow d / d x=n u^{n-1} \cdot d u / d x$

\#23

$y=\left(1+\cos ^{2} 7 x\right)^{3}$
$3\left(1+\cos ^{2} 7 x\right)^{2}(2 \cos 7 x)(-\sin 7 x) 7$
$-42(\sin 7 x)(\cos 7 x)\left(1+\cos ^{2} 7 x\right)^{2}$
Reminder, we always use θ measured in radians. All the formulas only work for radians. Yes it can be done in degrees, but it is very complicated!!!!!!

