$\qquad$ Date $\qquad$ Per $\qquad$
Use the simple interest formula to answer the following. ( $\mathrm{I}=\mathrm{Prt}$ )

1. What is the interest due if $\$ 500$ is borrowed for 6 months at a simple interest rate of $6 \%$ per annum?
2. If you borrow $\$ 5,000$ and, after 9 months pay off the loan in the amount of $\$ 5,500$, what per annum rate of interest was charged?

Find the amount that results from each investment.
3. $\$ 100$ invested at $4 \%$ compounded quarterly after a period of 2 years.
4. $\$ 300$ invested at $12 \%$ compounded monthly after a period of $11 / 2$ years.
5. $\$ 5000$ invested at $5 \%$ compounded daily after a period of 3 years.
6. $\$ 4500$ invested at $3.2 \%$ compounded continuously after a period of 5 years.

## Find the principal that must be invested now to get each amount; that is, find the present value.

7. To get $\$ 100$ after 2 years at $6 \%$ compounded annually.
8. To get $\$ 600$ after $31 / 4$ years at $2.3 \%$ compounded quarterly.
9. To get $\$ 4000$ after 10 years at $4 \%$ compounded semiannually.
10. To get $\$ 750$ after 4 years at $8 \%$ compounded continuously.

## Solve the problem.

11. What rate of interest compounded annually is required to double an investment in 3 years?
12. What rate of interest compounded annually is required to triple an investment in 5 years?
13. a) How long does it take for an investment to double in value at $6 \%$ compounded monthly?
b) How long does it take for the investment to double in value at $6 \%$ compounded continuously?
14. If Tanisha has $\$ 100$ to invest at $8 \%$ per annum compounded quarterly, how long will it be before she has $\$ 150$ ? If the compounding is continuous, how long will it be?
15. Jerome will be buying a used car for $\$ 15,000$ in 3 years. How much money should he ask his parents for now so that, if he invests it at $5 \%$ compounded continuously, he will have enough to buy the car?

## Growth \& Decay Applications

16. The size P of a certain insect population at time t (in days) obeys the function $P(t)=500 e^{0.02 t}$.
a) Determine the number of insects at $=0$ days.
b) What is the growth rate of the insect population?
c) What is the population after 10 days?
d) When will the population reach 800 ?
e) When will the insect population double?
17. Strontium 90 is a radioactive material that decays according to the function $\mathrm{A}(t)=A_{0} e^{-0.0244 t}$, where $\mathrm{A}_{0}$ is the initial amount present and A is the amount present at time t (in years). Assume that a scientist has a sample of 500 grams of strontium 90.
a) What is the decay rate of strontium 90 ?
b) How much strontium 90 is left after 10 years?
c) When will 400 grams of strontium 90 be left?
d) What is the half-life of strontium 90 ?
18. The population of a colony of mosquitos obeys the law of inhibited growth.
a) If N is the population of the colony and t is the time in days, express N as a function of t .
b) If there are 1000 mosquitoes initially and there are 1800 after day 1 , what is the size of the colony after 3 days?
c) How long is it until there are 10,000 mosquitoes?
19. The population of a southern city follows the exponential law.
a) If N is the population of the city and t is the time in years, express N as a function of t .
b) If the population doubled in size over an 18 -month period and the current population is 10,000 , what will the population be 2 years from now?
20. The population of a Midwestern city follows the exponential law.
a) If N is the population of the city and t is the time in years, express N as a function of t .
b) If the population decreased from 900,000 to 800,000 from 2008 to 2010 , what will the population be in 2012?
21. The half-life of radioactive potassium is 1.3 billion years. If 10 grams is present now, how much will be present in 100 years? In 1000 years?
