Rules for Differentiation

Constant Rule $\quad \frac{d}{d x}(c)=0 \quad$ Example: $\quad f(x)=19 \quad f^{\prime}=0 \quad \mathrm{f}(\mathrm{x})=7 \quad \mathrm{f}^{\prime}(\mathrm{x})=$
Power Rule $\quad \frac{d}{d x} x^{n}=n \cdot x^{n-1} \quad($ power as long as $\mathrm{x} \neq 0$ and/or $\mathrm{h} \neq 0$)
Example: $f(x)=x^{2} \quad f^{\prime}(x)=2 x \quad f(x)=x^{4} \quad f^{\prime}(x)=4 x^{3} \quad f(x)=x^{7} \quad f^{\prime}(x)=$

$$
f(x)=\sqrt{x} \quad f^{\prime}(x)=
$$

Constant Multiple Rule $\quad \frac{d}{d x} k \cdot u=k \cdot \frac{d u}{d x}$
Example: $f(x)=5 x^{2} \quad f^{\prime}(x)=10 x \quad f(x)=-2 x^{4} \quad f^{\prime}(x)=-8 x^{3} \quad f(x)=2 x^{5} \quad f^{\prime}(x)=$
Sum/Difference Rule $\quad \frac{d}{d x}(u \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x}$

Example:

$$
f(x)=x^{3}+5 x^{2}-\frac{2}{5} x-4 \quad f^{\prime}(x)=3 x^{2}+10 x-\frac{2}{5}
$$

$$
y=3 t^{2}-4 t+2 \quad \frac{d y}{d t}=
$$

Product Rule

$$
\frac{d}{d x}(u \cdot v)=u \frac{d v}{d x}+v \frac{d u}{d x} \quad\left(1^{\text {st }} \text { times deriv of } 2^{\text {nd }}+2^{\text {nd }} \text { times deriv of } 1^{\text {st }}\right)
$$

$p=\left(x^{2}+3 x\right)(x-1) \quad \frac{d p}{d x}=$

Quotient Rule

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}}
$$

(bottom times deriv top - top times deriv bottom all over bottom squared)
$f(x)=\frac{2 x}{x-1} \quad f^{\prime}(x)=$
$f(x)=\frac{1}{x-1} \quad f^{\prime}(x)=$

What if you are only given the value of the functions and their derivatives at certain points?
Let $\mathrm{y}=\mathrm{u} \cdot \mathrm{v}$
$u(2)=3$
$u^{\prime}(2)=-4$
$\mathrm{v}(2)=1$
$\mathrm{v}^{\prime}(2)=2$

Find $y^{\prime}(2)$
By product rule: $\quad y^{\prime}(2)=u(2) v^{\prime}(2)+v(2) u^{\prime}(2) \quad y^{\prime}(2)=3(2)+1(-4) \quad y^{\prime}(2)=2$
If $y=\frac{u}{v} \quad$ Find $\frac{d y}{d x}(2)$

If we can differentiate a function once, what's to stop us from differentiating again.
f^{\prime} is $1^{\text {st }}$ derivative, $\mathrm{f}^{\prime \prime}$ (f double prime) is $2^{\text {nd }}$ derivative $\quad \mathrm{f}^{\prime \prime \prime}$ (f triple prime)
$\frac{d y}{d x} \frac{d^{2} y}{d x^{2}} \frac{d^{3} y}{d x^{3}} \quad$ "d squared $\mathrm{y} \quad \mathrm{d} \mathrm{x}$ squared" $\quad \mathrm{d}$ cubed y d x cubed"
$y^{\prime} \quad 1^{\text {st }}$ derivative $\quad y^{\prime \prime} 2^{\text {nd }}$ derivative $\quad y^{\prime \prime \prime} 3^{\text {rd }}$ derivative $y^{\text {n }}$ nth derivative
Example:

$$
\begin{aligned}
& f(x)=2 x^{4}-x^{3}+6 x \\
& f^{\prime}(x)=8 x^{3}-3 x^{2}+6 \\
& f^{\prime \prime}(x)=24 x^{2}-6 x \\
& f^{\prime \prime \prime}(x)=48 x-6 \\
& f^{\prime \prime \prime \prime}(x)=48 \\
& f^{\prime \prime \prime \prime \prime}(x)=0
\end{aligned}
$$

Recall position (s), velocity(v), and acceleration (a)
$S(t) s=16 t^{2}$
$\mathrm{v}(\mathrm{t}) \mathrm{s}^{\prime}=32 \mathrm{t}$
$a(t) \quad s^{\prime \prime}=32 \mathrm{ft} / \mathrm{sec}^{2}$

