Logarithmic Functions

Question: What is the inverse of an exponential function? How do you solve for a variable that is in an exponent?

Find the inverse of $f(x)=2^{x}$.

1. Write $f(x)$ as $y . \quad y=2^{x}$
2. Swap x and $y . \quad x=2^{y}$
3. Solve for $y . \quad y=$ the exponent to which we raise 2 to get x.
4. Rename y as $f^{-1}(x) \quad f^{-1}(x)=$ the exponent to which we raise 2 to get x.

We need a new symbol to replace the words: "The exponent to which we raise 2 to get x "
Symbol: $\log _{2} x \quad$ Pronounced: "the logarithm, base 2, of x " or 'log, base 2, of x "

*LOGARITHMS ARE EXPONENTS! \star

Logarithm: $\log _{b} a$ means the exponent to which we raise \boldsymbol{b} to get \boldsymbol{a}.

- \boldsymbol{b} is called the base of the logarithm (the number being raised to the exponent).
- \boldsymbol{a} is called the argument of the logarithm (the number you get when you raise the base to the exponent).

Converting Between Logarithmic and Exponential Form:

If b is a positive number other than 1 , and a is a positive number:

$$
\begin{aligned}
\log _{b} a=x & \Leftrightarrow b^{x}=a \\
\left(\text { " } \log _{\text {base }} \text { argument }=\right.\text { exponent" } & \left.\Leftrightarrow \text { "base }^{\text {exponent }}=\text { argument" }\right)
\end{aligned}
$$

Common Logarithms and Natural Logarithms

- Logarithms with base 10 are called "common logarithms".
- $\log _{10} x$ is written as $\log x$.
- Logarithms with base e are called "natural logarithms".
- $\log _{e} x$ is written as $\ln x$.

Example: Change each exponential expression to an equivalent expression involving a logarithm.
a) $5^{4}=625$
b) $n^{3}=64$
c) $3^{2}=w$
d) $e^{6}=k$
e) $10^{y}=73$

Example: Change each logarithmic expression to an equivalent expression involving an exponent.
a) $\log _{3} 81=4$
b) $\log _{m} 25=2$
c) $\log _{p} q=r$
d) $\ln 5=x$
e) $\log x=3$

Evaluating Logarithms: It is helpful to replace "log" with the word "power".

- Instead of " $\log _{2} 8$," think " power $_{2} 8$." Ask yourself, what power of 2 equals 8 ?
- The answer would be 3 because $2^{3}=8$.

Example: Find the exact value of
a) $\log _{3} 9$
b) $\log _{1 / 2}(1 / 32)$
c) $\log _{6} 1$
d) $\log 0.0001$
e) $\log _{7} \sqrt{7}$
f) $\ln \sqrt[5]{e^{3}}$

Domain of a Logarithmic Function

The logarithmic function $y=\log _{a} x$ is the inverse of the exponential function $y=a^{x}$.
Domain of a logarithmic function = Range of the exponential function that is its inverse
Range of a logarithmic function $=$ Domain of the exponential function that is its inverse $=(-\infty, \infty)$

$$
\begin{aligned}
& y=\log _{a} x \text { (defining equation: } x=a^{y} \text {) } \\
& \text { Domain: }(0, \infty) \quad \text { Range: all real numbers }
\end{aligned}
$$

\star You can't take the \log of zero or of a negative because it is impossible to get zero or a negative by raising a positive base to an exponent.
\star The argument of a logarithmic function must be greater than zero.
Example: Find the domain of each logarithmic function
a) $f(x)=\log _{2}(x+3)$
b) $g(x)=\log _{5}(10-2 x)$
c) $h(x)=\log _{\frac{1}{2}}|x|$

Graphs of Logarithmic Functions

$$
f(x)=\log _{a} x, a>1
$$

$$
f(x)=\log _{a} x, 0<a<1
$$

Properties of the Logarithmic Function $f(x)=\log _{a} x$

1. The domain is the set of all positive real numbers; the range is the set of all real numbers.
2. The x-intercept is 1 . There is no y-intercept.
3. The y-axis $(x=0)$ is a vertical asymptote of the graph.
4. The logarithmic function is decreasing if $0<a<1$ and increasing if $a>1$. The function is one-to-one.
5. The graph of f contains the points $(1,0),(a, 1)$, and $\left(\frac{1}{a},-1\right)$.
6. The graph of f is smooth and continuous, with no corners, gaps, or cusps.

Graphing Logarithmic Functions:

1. Solve the equation for x by rewriting it as an exponential function. $y=\log _{a} x \Leftrightarrow a^{y}=x$
\star When you do this, get the logarithm by itself on one side of the equation first, then rewrite.
2. Choose y-values, and plug them in to find the x-values.
\star Choose y-values that will make the exponents be $-2,-1,0,1$, and 2 . If the exponent in the equation is $y+3$, choose $-5,-4,-3,-2$, and -1 , because when you add 3 to these y 's, you will get $-2,-1,0,1$, and 2 . If the exponent in the equation is $y / 3$, choose $-6,-3,0,3$, and 6 , because you will divide these y 's by 3 to get the exponents.
3. Plot your points and connect them to form a smooth curve.

Examples: Graph the following functions. State the domain and range, and label any asymptotes.
a) $y=\log _{2} x$
b) $y=-\log _{1 / 3} x$

c) $f(x)=\log _{3}(x-1)$

d) $f(x)=\log _{1 / 2} x+2$

Example: $f(x)=2 \ln (x-3)$
a) Find the domain of the logarithmic function.
b) Graph $f(x)$.
c) Find the range and vertical asymptote of f.
d) Find f^{-1}, the inverse of f.
e) Graph f^{-1}.

Example: $f(x)=-\log (x+4)$
a) Find the domain of the logarithmic function.
b) Graph $f(x)$.
c) Find the range and vertical asymptote of f.
d) Find f^{-1}, the inverse of f.
e) Graph f^{-1}.

