Logarithmic Functions

Question: What is the inverse of an exponential function? How do you solve for a variable that is in an exponent?

Find the inverse of $f(x) = 2^x$.

- 1. Write f(x) as y. $y = 2^x$
- Swap x and y. x = 2^y
 Solve for y. y = the exponent to which we raise 2 to get x.
- 4. Rename y as $f^{-1}(x) = f^{-1}(x) = f^{-1}(x)$ = the exponent to which we raise 2 to get x.

We need a new symbol to replace the words: "The exponent to which we raise 2 to get x"

Pronounced: "the logarithm, base 2, of x" or "log, base 2, of x" Symbol: $\log_2 x$

★LOGARITHMS ARE EXPONENTS!★

Logarithm: $\log_b a$ means the **exponent** to which we raise **b** to get **a**.

- **b** is called the **base** of the logarithm (the number being raised to the exponent).
- *a* is called the *argument* of the logarithm (the number you get when you raise the base to the exponent).

Converting Between Logarithmic and Exponential Form:

If b is a positive number other than 1, and a is a positive number:

$$\log_b a = x \iff b^x = a$$

$$("log_{base} argument = exponent" \Leftrightarrow "base^{exponent} = argument")$$

Common Logarithms and Natural Logarithms

- Logarithms with base 10 are called "common logarithms".
 - $\circ \log_{10} x$ is written as $\log x$.
- Logarithms with base *e* are called "natural logarithms".
 - o $\log_a x$ is written as $\ln x$.

Example: Change each exponential expression to an equivalent expression involving a logarithm.

- a) $5^4 = 625$
- b) $n^3 = 64$
- c) $3^2 = w$
- d) $e^{6} = k$
- e) $10^y = 73$

Example: Change each logarithmic expression to an equivalent expression involving an exponent.

- a) $\log_3 81 = 4$
- b) $\log_{m} 25 = 2$
- c) $\log_n q = r$
- d) $\ln 5 = x$
- e) $\log x = 3$

Evaluating Logarithms: It is helpful to replace "log" with the word "power".

- Instead of "log₂ 8," think "power₂ 8." Ask yourself, what power of 2 equals 8?
 - The answer would be 3 because $2^3 = 8$.

Example: Find the exact value of

- a) $\log_3 9$
- b) $\log_{1/2}(1/32)$ c) $\log_6 1$ d) $\log 0.0001$ e) $\log_7 \sqrt{7}$ f) $\ln \sqrt[5]{e^3}$

Domain of a Logarithmic Function

The logarithmic function $y = \log_a x$ is the inverse of the exponential function $y = a^x$.

Domain of a logarithmic function = Range of the exponential function that is its inverse

Range of a logarithmic function = Domain of the exponential function that is its inverse = $(-\infty, \infty)$

$$y = \log_a x$$
 (defining equation: $x = a^y$)

Domain:
$$(0, \infty)$$

- ★ You can't take the log of zero or of a negative because it is impossible to get zero or a negative by raising a positive base to an exponent.
- **★** The argument of a logarithmic function must be greater than zero.

Example: Find the domain of each logarithmic function

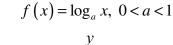
a)
$$f(x) = \log_2(x+3)$$

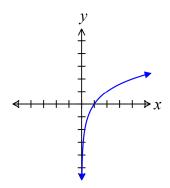
a)
$$f(x) = \log_2(x+3)$$
 b) $g(x) = \log_5(10-2x)$ c) $h(x) = \log_{\frac{1}{2}}|x|$

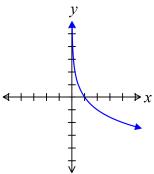
c)
$$h(x) = \log_{\frac{1}{2}} |x|$$

Graphs of Logarithmic Functions

$$f(x) = \log_a x, \ a > 1$$







Properties of the Logarithmic Function $f(x) = \log_a x$

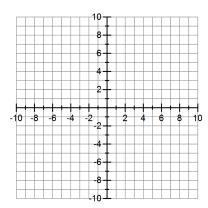
- 1. The domain is the set of all positive real numbers; the range is the set of all real numbers.
- 2. The *x*-intercept is 1. There is no *y*-intercept.
- 3. The y-axis (x = 0) is a vertical asymptote of the graph.
- 4. The logarithmic function is decreasing if 0 < a < 1 and increasing if a > 1. The function is one-to-one.
- 5. The graph of f contains the points (1,0), (a,1), and $(\frac{1}{a},-1)$.
- 6. The graph of f is smooth and continuous, with no corners, gaps, or cusps.

Graphing Logarithmic Functions:

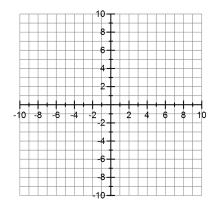
- 1. Solve the equation for x by rewriting it as an exponential function. $y = \log_a x \iff a^y = x$
 - ★ When you do this, get the logarithm by itself on one side of the equation first, then rewrite.
- 2. Choose y-values, and plug them in to find the x-values.
 - ★ Choose y-values that will make the *exponents* be -2, -1, 0, 1, and 2. If the exponent in the equation is y + 3, choose -5, -4, -3, -2, and -1, because when you add 3 to these y's, you will get -2, -1, 0, 1, and 2. If the exponent in the equation is y/3, choose -6, -3, 0, 3, and 6, because you will divide these y's by 3 to get the exponents.
- 3. Plot your points and connect them to form a smooth curve.

Examples: Graph the following functions. State the domain and range, and label any asymptotes.

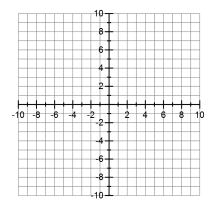
a) $y = \log_2 x$



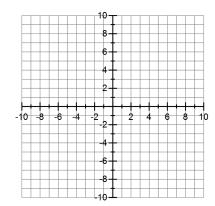
b) $y = -\log_{1/3} x$



c) $f(x) = \log_3(x-1)$

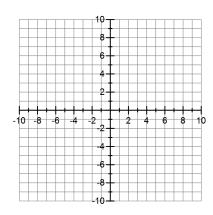


d) $f(x) = \log_{1/2} x + 2$



Example: $f(x) = 2\ln(x-3)$

- a) Find the domain of the logarithmic function.
- b) Graph f(x).
- c) Find the range and vertical asymptote of f.
- d) Find f^{-1} , the inverse of f.
- e) Graph f^{-1} .



Example: $f(x) = -\log(x+4)$

- a) Find the domain of the logarithmic function.
- b) Graph f(x).
- c) Find the range and vertical asymptote of f.
- d) Find f^{-1} , the inverse of f.
- e) Graph f^{-1} .

