
Precalculus – 3.2 Notes 

Exponential Functions 
 

Laws of Exponents: If m, n, a, and b are real numbers with a > 0 and b > 0, then 
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An exponential function is a function of the form ( ) ,x
f x a=  where a is a positive real number ( )0a >  and 

1.a ≠  The domain of f  is the set of all real numbers. 

 

Properties of the Exponential Function (((( )))) ,  0,  1
xf x a a a= > ≠= > ≠= > ≠= > ≠  

• Domain: ( ), ;−∞ ∞  Range: ( )0,∞  

• There are no x-intercepts; the y-intercept is 1. 

• The x-axis ( )0y = is a horizontal asymptote. 

o For 1,a >  the graph approaches the x-axis as .x → −∞  

o For 0 1,a< <  the graph approaches the x-axis as .x → ∞  

• ( ) x
f x a=  is one-to-one. 

o For 1,a >  ( ) x
f x a=  is an increasing function. 

o For 0 1,a< <  ( ) x
f x a=  is a decreasing function. 

• The graph of f  contains the points ( ) ( ) ( )11, ,  0,1 ,  and 1, .
a

a−  

• The graph of f  is smooth and continuous, with no corners, gaps, or cusps. 

 

 

 

 

 

 

 

 

 

 

 

Examples: 

a)  Graph ( ) 3 .
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c)  Graph ( ) 3
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e)  Graph ( ) 2 .
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The number e (approximately 2.71828…) is defined as the number that the expression 
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.n → ∞  In calculus, this is expressed using limit notation as 
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Examples:  

a)  Graph ( ) .
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f x e=       b)  Graph ( ) x
f x e
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Solving Exponential Equations 

If 0 and 1 and ,  then .u va a a a u v> ≠ = =  

Many exponential equations can be rewritten so the two sides have a common base. This allows us to set the 

exponents equal to each other and solve the equation. 

Examples: Solve the following equations. 
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