Exponential Functions

Laws of Exponents: If m, n, a, and b are real numbers with a > 0 and b > 0, then

$$a^{m} \cdot a^{n} = a^{m+n}$$
 $\frac{a^{m}}{a^{n}} = a^{m-n}$ $(a^{m})^{n} = a^{mn}$ $(ab)^{m} = a^{m}b^{m}$ $a^{-m} = \frac{1}{a^{m}} = \left(\frac{1}{a}\right)^{m}$ $a^{0} = 1$

An *exponential function* is a function of the form $f(x) = a^x$, where *a* is a positive real number (a > 0) and $a \ne 1$. The domain of *f* is the set of all real numbers.

Properties of the Exponential Function $f(x) = a^x$, a > 0, $a \neq 1$

- Domain: $(-\infty,\infty)$; Range: $(0,\infty)$
- There are no *x*-intercepts; the *y*-intercept is 1.
- The x-axis (y=0) is a horizontal asymptote.
 - For a > 1, the graph approaches the *x*-axis as $x \to -\infty$.
 - For 0 < a < 1, the graph approaches the *x*-axis as $x \to \infty$.
- $f(x) = a^x$ is one-to-one.
 - For a > 1, $f(x) = a^x$ is an increasing function.
 - For 0 < a < 1, $f(x) = a^x$ is a decreasing function.
- The graph of f contains the points $(-1, \frac{1}{a})$, (0,1), and (1,a).
- The graph of f is smooth and continuous, with no corners, gaps, or cusps.

Examples:

a) Graph $f(x) = 3^x$.

e) Graph $f(x) = 2^{-x}$.

The **number** *e* (approximately 2.71828...) is defined as the number that the expression $\left(1+\frac{1}{n}\right)^n$ approaches as $n \to \infty$. In calculus, this is expressed using limit notation as $e = \lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n$.

b) Graph $f(x) = -e^{-x}$

Solving Exponential Equations

If a > 0 and $a \neq 1$ and $a^u = a^v$, then u = v.

Many exponential equations can be rewritten so the two sides have a common base. This allows us to set the exponents equal to each other and solve the equation.

Examples: Solve the following equations.

a)
$$3^{-x} = 243$$
 b) $5^{x+3} = \frac{1}{5}$ c) $4^{x^2} = 2^x$ d) $\frac{1}{7} = 49^{x+2}$

e)
$$3^{x^2-5x} = \frac{1}{81}$$
 f) $4^x \cdot 8^{x^2} = 16^2$ g) $e^{x^2} = \frac{e^{3x}}{e^2}$