Exponential Functions

Laws of Exponents: If m, n, a, and b are real numbers with $a>0$ and $b>0$, then
$a^{m} \cdot a^{n}=a^{m+n}$
$\frac{a^{m}}{a^{n}}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$(a b)^{m}=a^{m} b^{m}$
$a^{-m}=\frac{1}{a^{m}}=\left(\frac{1}{a}\right)^{m}$
$a^{0}=1$

An exponential function is a function of the form $f(x)=a^{x}$, where a is a positive real number $(a>0)$ and $a \neq 1$. The domain of f is the set of all real numbers.

Properties of the Exponential Function $f(x)=a^{x}, a>0, a \neq 1$

- Domain: $(-\infty, \infty)$; Range: $(0, \infty)$
- There are no x-intercepts; the y-intercept is 1 .
- The x-axis $(y=0)$ is a horizontal asymptote.
- For $a>1$, the graph approaches the x-axis as $x \rightarrow-\infty$.
- For $0<a<1$, the graph approaches the x-axis as $x \rightarrow \infty$.
- $f(x)=a^{x}$ is one-to-one.
- For $a>1, f(x)=a^{x}$ is an increasing function.
- For $0<a<1, f(x)=a^{x}$ is a decreasing function.
- The graph of f contains the points $\left(-1, \frac{1}{a}\right),(0,1)$, and $(1, a)$.
- The graph of f is smooth and continuous, with no corners, gaps, or cusps.

$$
0<a<1
$$

Examples:

a) Graph $f(x)=3^{x}$.
b) Graph $f(x)=2 \cdot\left(\frac{1}{3}\right)^{x}$.

c) Graph $f(x)=5^{x+3}$.

d) Graph $f(x)=\left(\frac{1}{2}\right)^{x}+3$.

e) Graph $f(x)=2^{-x}$.

f) Graph $f(x)=-3^{x}$

The number \boldsymbol{e} (approximately $2.71828 \ldots$) is defined as the number that the expression $\left(1+\frac{1}{n}\right)^{n}$ approaches as $n \rightarrow \infty$. In calculus, this is expressed using limit notation as $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.

Examples:

a) Graph $f(x)=e^{x}$.

b) Graph $f(x)=-e^{-x}$

Solving Exponential Equations

If $a>0$ and $a \neq 1$ and $a^{u}=a^{v}$, then $u=v$.
Many exponential equations can be rewritten so the two sides have a common base. This allows us to set the exponents equal to each other and solve the equation.

Examples: Solve the following equations.
a) $3^{-x}=243$
b) $5^{x+3}=\frac{1}{5}$
c) $4^{x^{2}}=2^{x}$
d) $\frac{1}{7}=49^{x+2}$
e) $3^{x^{2}-5 x}=\frac{1}{81}$
f) $4^{x} \cdot 8^{x^{2}}=16^{2}$
g) $e^{x^{2}}=\frac{e^{3 x}}{e^{2}}$

