Composite Functions, Inverse Functions

Composite Function: In a composite function, one function is performed, and then a second function is performed on the result of the first function. $(f \circ g)(x) = f(g(x))$ and $(g \circ f)(x) = g(f(x))$.

Hints:

- Work inside out. Plug the input into the inside function, then plug the result into the outside function.
- $(f \circ g)(x) = f(g(x))$ is not the same as $(f \cdot g)(x) = f(x) \cdot g(x)$. Composition of functions Multiplication of functions

Example: Evaluate each expression using the graph.

Example:
$$f(x) = 2x^2$$
 and $g(x) = 1 - 3x^2$
a) Find $(f \circ g)(4)$ b) Find $(g \circ f)(2)$

c) Find
$$(f \circ f)(1)$$
 d) Find $(g \circ g)(0)$

Domain of a Composite Function

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x) is in the domain of f.

Examples: Find the domain of the composite function $(f \circ g)(x)$.

a)
$$f(x) = \frac{1}{x-2}$$
, $g(x) = \sqrt{x}$
b) $f(x) = \frac{x}{x-1}$, $g(x) = \frac{x+5}{x-4}$

Example: f(x) = x+1 and $g(x) = x^2+4$ a) Find $(f \circ g)(x)$ and its domain.

b) Find $(g \circ f)(x)$ and its domain.

Example:
$$f(x) = \frac{1}{x+3}$$
 and $g(x) = -\frac{2}{x}$
a) Find $(f \circ g)(x)$ and its domain.

b) Find $(g \circ f)(x)$ and its domain.

c) Find $(f \circ f)(x)$ and its domain.

d) Find $(g \circ g)(x)$ and its domain.

Example: Find functions f and g such that $f \circ g = H$. a) $H(x) = (x^2 + 1)^4$ b) H(x) = |2x+1| **One-to-one Function:** A function is **one-to-one** if for any value of x there is exactly one y (otherwise it wouldn't be a function), and for any value of y, there is exactly one x.

Example: Determine whether the following functions are one to one. a) $\{(-2,6), (-1,3), (0,2), (1,5), (2,8)\}$ b) $\{(1,1), (2,4), (3,9), (0,0), (-1,1), (-2,4)\}$

Horizontal Line Test: If every horizontal line intersects the graph of a function f in at most one point, then f is one-to-one.

Example: For each function, use its graph to determine whether the function is one-to-one. a) f(x) = |x|b) $g(x) = \sqrt[3]{x}$

Theorem: A function that is increasing on an interval I is a one-to-one function on I. A function that is decreasing on an interval I is a one-to-one function on I.

Inverse Function: Two functions are *inverses* if and only if whenever one function contains the element (a,b), the other function contains the element (b,a). If f is a one-to-one function, the correspondence from the range of f back to the domain of f is called the *inverse function* of f. The inverse of f is abbreviated f^{-1} .

★ Domain of $f = \text{Range of } f^{-1}$ Range of $f = \text{Domain of } f^{-1}$

Example: Find the inverse of the following one-to-one function: $\{(2,3), (4,5), (6,8), (9,10), (12,14)\}$

If we start with x, apply f, and then apply f^{-1} , we get x back again. If we start with x, apply f^{-1} , and then apply f, we get x back again. What f does, f^{-1} undoes, and vice versa. In other words, $f^{-1}(f(x)) = x$, where x is in the domain of f.

 $f(f^{-1}(x)) = x$ where x is in the domain of f^{-1} .

To verify that two functions are inverses, show that f(g(x)) = x and g(f(x)) = x

Example: Verify that the functions are inverses. a) f(x) = 4x; g(x) = x/4b) f(x) = 4-3x; $g(x) = \frac{1}{3}(4-x)$

c)
$$f(x) = \frac{2}{x+5}$$
; $g(x) = \frac{2}{x} - 5$
d) $f(x) = \sqrt[3]{2x}$; $g(x) = \frac{x^3}{2}$

Theorem: The graph of a function f and the graph of its inverse f^{-1} are symmetric with respect to the line y = x.

Example: Draw the graph of the inverse function.

y = f(x) = x(a₃, b₃) (a₂, b₂) (a₁, b₁) (b₁, a₁) (b₁, a₁) (b₁, a₁)

Finding the Inverse of a Function

- 1. Rewrite f(x) as y in the original equation.
- 2. Interchange x and y.
- 3. Solve for *y*.
- 4. Replace y with the notation $f^{-1}(x)$.

Example: Find the inverse. State the domain and range of f(x) and the domain and range of $f^{-1}(x)$.

a) f(x) = -3x+1b) $f(x) = \frac{2x+3}{5x-4}$