Composite Functions, Inverse Functions

Composite Function: In a composite function, one function is performed, and then a second function is performed on the result of the first function. $(f \circ g)(x)=f(g(x))$ and $(g \circ f)(x)=g(f(x))$.

Hints:

- Work inside out. Plug the input into the inside function, then plug the result into the outside function.
- $\quad(f \circ g)(x)=f(g(x))$ is not the same as $(f \cdot g)(x)=f(x) \cdot g(x)$.

Multiplication of functions

Example: Evaluate each expression using the graph.

a) $(f \circ g)(4)$
b) $(g \circ f)(-1)$
c) $(f \circ f)(1)$
d) $(g \circ g)(0)$

Example: $f(x)=2 x^{2}$ and $g(x)=1-3 x^{2}$
a) Find $(f \circ g)(4)$
b) Find $(g \circ f)(2)$
c) Find $(f \circ f)(1)$
d) Find $(g \circ g)(0)$

Domain of a Composite Function

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that $g(x)$ is in the domain of f.

Examples: Find the domain of the composite function $(f \circ g)(x)$.
a) $f(x)=\frac{1}{x-2}, g(x)=\sqrt{x}$
b) $f(x)=\frac{x}{x-1}, g(x)=\frac{x+5}{x-4}$

Example: $f(x)=x+1$ and $g(x)=x^{2}+4$
a) Find $(f \circ g)(x)$ and its domain.
b) Find $(g \circ f)(x)$ and its domain.

Example: $f(x)=\frac{1}{x+3}$ and $g(x)=-\frac{2}{x}$
a) Find $(f \circ g)(x)$ and its domain.
b) Find $(g \circ f)(x)$ and its domain.
c) Find $(f \circ f)(x)$ and its domain.
d) Find $(g \circ g)(x)$ and its domain.

Example: Find functions f and g such that $f \circ g=H$.
a) $H(x)=\left(x^{2}+1\right)^{4}$
b) $H(x)=|2 x+1|$

One-to-one Function: A function is one-to-one if for any value of x there is exactly one y (otherwise it wouldn't be a function), and for any value of y, there is exactly one x.

Example: Determine whether the following functions are one to one.
a) $\{(-2,6),(-1,3),(0,2),(1,5),(2,8)\}$
b) $\{(1,1),(2,4),(3,9),(0,0),(-1,1),(-2,4)\}$

Horizontal Line Test: If every horizontal line intersects the graph of a function f in at most one point, then f is one-to-one.

Example: For each function, use its graph to determine whether the function is one-to-one.
a) $f(x)=|x|$
b) $g(x)=\sqrt[3]{x}$

Theorem: A function that is increasing on an interval I is a one-to-one function on I. A function that is decreasing on an interval I is a one-to-one function on I.

Inverse Function: Two functions are inverses if and only if whenever one function contains the element (a, b), the other function contains the element (b, a). If f is a one-to-one function, the correspondence from the range of f back to the domain of f is called the inverse function of f. The inverse of f is abbreviated f^{-1}.

$$
\star \quad \text { Domain of } f=\text { Range of } f^{-1} \quad \text { Range of } f=\text { Domain of } f^{-1}
$$

Example: Find the inverse of the following one-to-one function: $\{(2,3),(4,5),(6,8),(9,10),(12,14)\}$

If we start with x, apply f, and then apply f^{-1}, we get x back again.
If we start with x, apply f^{-1}, and then apply f, we get x back again.
What f does, f^{-1} undoes, and vice versa. In other words,

$$
\begin{aligned}
& f^{-1}(f(x))=x \text {, where } x \text { is in the domain of } f . \\
& f\left(f^{-1}(x)\right)=x \text { where } x \text { is in the domain of } f^{-1} .
\end{aligned}
$$

To verify that two functions are inverses, show that $f(g(x))=x$ and $g(f(x))=x$

Example: Verify that the functions are inverses.
a) $f(x)=4 x ; g(x)=x / 4$
b) $f(x)=4-3 x ; g(x)=\frac{1}{3}(4-x)$
c) $f(x)=\frac{2}{x+5} ; g(x)=\frac{2}{x}-5$
d) $f(x)=\sqrt[3]{2 x} ; g(x)=\frac{x^{3}}{2}$

Theorem: The graph of a function f and the graph of its inverse f^{-1} are symmetric with respect to the line $y=x$.

Example: Draw the graph of the inverse function.

Finding the Inverse of a Function

1. Rewrite $f(x)$ as y in the original equation.
2. Interchange x and y.
3. Solve for y.
4. Replace y with the notation $f^{-1}(x)$.

Example: Find the inverse. State the domain and range of $f(x)$ and the domain and range of $f^{-1}(x)$.
a) $f(x)=-3 x+1$
b) $f(x)=\frac{2 x+3}{5 x-4}$

