3.1 Functions and Inverse Functions

Name \qquad Date \qquad Per \qquad

1. Evaluate each expression using the graphs of $y=f(x)$ and $y=g(x)$ shown in the figure.
a) $(g \circ f)(1)$
b) $(g \circ f)(5)$
c) $(f \circ g)(0)$
d) $(f \circ g)(2)$
e) $(f \circ f)(6)$
f) $(f \circ f)(-1)$
g) $(g \circ g)(7)$
h) $(g \circ g)(-1)$

For problems 2-5, find the following:
a) $(f \circ g)(4)$
b) $(g \circ f)(2)$
c) $(f \circ f)(1)$
d) $(g \circ g)(0)$

2. $f(x)=3 x+2 ; g(x)=2 x^{2}-1$
3. $f(x)=4 x^{2}-3 ; g(x)=3-\frac{1}{2} x^{2}$
4. $f(x)=\sqrt{x+1} ; g(x)=3 x$
5. $f(x)=|x-2| ; g(x)=\frac{3}{x^{2}+2}$

For problems 6-10, find the following:
a) $(f \circ g)(x)$
b) $(g \circ f)(x)$

Also state the domain of each composite function!
6. $f(x)=-x ; g(x)=2 x-4$
7. $f(x)=3 x+1 ; g(x)=x^{2}$
8. $f(x)=\sqrt{x-2} ; g(x)=1-2 x$
9. $f(x)=\frac{x}{x-1} ; g(x)=-\frac{4}{x}$
10. $f(x)=\frac{x-5}{x+1} ; g(x)=\frac{x+2}{x-3}$

For problems 11-13, find functions f and g so that $f \circ g=H$.
11. $H(x)=(2 x+3)^{3}$
12. $H(x)=\sqrt{x^{2}+1}$
13. $H(x)=5 x^{2}-2$
14. The surface area S (in square meters) of a hot-air balloon is given by $S(r)=4 \pi r^{2}$, where r is the radius of the balloon (in meters). If the radius r is increasing with time t (in seconds) according to the formula $r(t)=\frac{2}{3} t^{3}$, find the surface area S of the balloon as a function of the time t.

For problems 15-16, decide whether the function is one-to-one. If it is one-to-one, write the inverse function and state the domain and range of the function and the domain and range of the inverse.
15. $\{(-2,5),(-1,3),(3,7),(4,12)\}$
16. $\{(2,6),(-3,6),(4,9),(1,10)\}$

For problems 17-20, sketch the graph and use the horizontal line test to determine whether the function is one-to-one.
17. $y=(x-3)^{2}$
18. $y=\sqrt{x}+2$
19. $y=-x^{3}$
20. $y=x(x+1)(x-2)$

For problems 21-25, verify that the functions f and g are inverses of each other by showing that $(f \circ g)(x)=x$ and $(g \circ f)(x)=x$.
21. $f(x)=4 x+8 ; g(x)=\frac{x}{4}-2$
22. $f(x)=3-2 x ; g(x)=-\frac{1}{2}(x-3)$
23. $f(x)=x^{3}-8 ; g(x)=\sqrt[3]{x+8}$
24. $f(x)=(x-2)^{2}, x \geq 2 ; g(x)=\sqrt{x}+2$
25. $f(x)=\frac{x-5}{2 x+3} ; g(x)=\frac{3 x+5}{1-2 x}$

In problems 26-30, the function f is one-to-one. Find its inverse. State the domain and range of f and the domain and range of f^{-1}.
26. $f(x)=4 x-2$
27. $f(x)=x^{2}+4, x \geq 0$
28. $f(x)=\frac{4}{x+2}$
29. $f(x)=\frac{2 x}{3 x-1}$
30. $f(x)=\frac{2 x-3}{x+4}$
31. $f(x)=\sqrt{x-5}+2$

In problems 31-33, the graph of a one-to-one function f is given. Draw the graph of the inverse function f^{-1}. For convenience (and as a hint), the graph of $y=x$ is also given.
32.

33.

34.

35. Taking into account reaction time, the distance d (in feet) that a car requires to come to a complete stop while traveling r miles per hour is given by the function $d(r)=6.97 r-90.39$.
a) Express the speed r at which the car is traveling as a function of the distance d required to come to a complete stop. (All you are doing is solving the equation for r. In a story problem, that's all finding the inverse is - solving for the other variable!)
b) Verify that $r=r(d)$ is the inverse of $d=d(r)$ by showing that $r(d(r))=r$ and $d(r(d))=d$. (Plug the two equations into each other like you did in problems 21-25.)
c) Predict the speed that a car was traveling if the distance required to stop was 300 feet.

