For each rational function, do the following:
a) Write the function with the numerator and denominator completely factored.
b) State the domain.
c) Write the function in simplest form.
d) Find the x - and y-intercepts.
e) Find any holes.
f) Find the vertical asymptotes.
g) Find the horizontal or oblique asymptote or the higher-degree function that the ends approach.
h) Neatly draw the graph of the function. Label at least 3 points on the graph.

1. $R(x)=\frac{x+1}{x(x+4)}$
2. $R(x)=\frac{2 x+4}{x-1}$
3. $R(x)=\frac{6}{x^{2}-2 x-8}$
4. $R(x)=\frac{x^{2}+x-12}{x^{2}-x-6}$
5. $R(x)=\frac{x^{4}-1}{x^{2}-4} \quad$ Hint: $x^{4}-1$ is a difference of squares
6. $G(x)=\frac{2-x}{(x-1)^{2}}$
7. $H(x)=\frac{x^{3}-1}{x^{2}-9}$

Hint: $A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$
8. $H(x)=\frac{2 x^{2}+2 x-4}{x^{2}+3 x-4}$
9. $R(x)=\frac{-4}{(x+1)\left(x^{2}-9\right)}$
10. $F(x)=\frac{x^{2}-3 x-4}{x+2}$
11. $F(x)=\frac{6 x^{2}-x-15}{2 x^{2}-x-6}$
12. $G(x)=\frac{x^{2}-x-12}{x+1}$
13. $R(x)=\frac{-3 x+6}{x^{2}-4}$

Write an equation for a rational function that might have the given graph.

16. The concentration C of a certain drug in a patient's bloodstream t minutes after injection is given by

$$
C(t)=\frac{50 t}{t^{2}+25}
$$

a) Find the horizontal asymptote of $C(t)$. What happens to the concentration of the drug as t increases?
b) Using your graphing calculator, graph $C(t)$.
c) Using your graphing calculator, determine when the concentration of the drug is the highest.
17. UPS has hired you to design a closed box with a square base that has a volume of 10,000 cubic inches. See the illustration.
a) Express the surface area A of the box as a function of x.
b) Using your graphing calculator, graph $A(x)$.
c) What is the minimum amount of cardboard that can be used to construct the box?
d) What are the dimensions of the box that minimize the surface area?

