Properties of Rational Functions

A rational function is a function of the form $R(x)=\frac{p(x)}{q(x)}$, where p and q are polynomial functions and q is not the zero polynomial.

Finding the Domain of a Rational Function

The domain of a rational function is the set of all real numbers except those for which the denominator q is 0 .
Examples: Find the domain of each rational function.
a) $R(x)=\frac{2 x^{2}-3}{x+3}$
b) $R(x)=\frac{x+3}{x^{2}-9}$
c) $R(x)=\frac{x^{2}}{x^{2}+7 x+12}$
\star Note: It is important to understand that $R(x)=\frac{x+3}{x^{2}-9}$ and $f(x)=\frac{1}{x-3}$ are not the same. They have different domains. Their graphs are nearly identical, but the graph of the first function has a hole in it at $x=-3$, while the graph of the second function does not.

A rational function $R(x)=\frac{p(x)}{q(x)}$ is in lowest terms if $p(x)$ and $q(x)$ have no common factors.

Finding the Intercepts of the Graph of a Rational Function

\star Simplify before finding the \boldsymbol{x}-intercepts of the graph! Otherwise, you may end up listing values that are actually holes in the graph.
\star When finding the y-intercepts, remember that if zero is not in the domain, there is no y-intercept!
To find the x-intercepts (real zeros) of the graph of a rational function, we set $R(x)=0$ and solve for x.
Notice that if $R(x)=\frac{p(x)}{q(x)}=0, p(x)$ must equal zero. It is the numerator that tells us about the x-intercepts.

- To find the \boldsymbol{x}-intercepts (real zeros), simplify the rational function and set the numerator equal to zero.
- To find the \boldsymbol{y}-intercept, make sure 0 is in the domain, then plug $x=0$ into either the simplified or the unsimplified function.

Examples: Find the x - and y-intercepts of each rational function.
a) $R(x)=\frac{x+2}{x^{2}-16}$
b) $R(x)=\frac{x^{2}-2 x-35}{x^{2}+11 x+30}$
c) $R(x)=\frac{x}{x^{2}+8 x}$

Asymptotes

Let R denote a function.

- If, as $x \rightarrow-\infty$ or as $x \rightarrow \infty$, the values of $R(x)$ approach some fixed number L, then the line $y=L$ is a horizontal asymptote of the graph of R.
- If, as x approaches some number c, the values of $R(x)$ approach ∞ or $-\infty$, then the line $x=c$ is a vertical asymptote of the graph of R.

$$
\lim _{x \rightarrow c^{+}} R(x)=\infty \quad \lim _{x \rightarrow c^{+}} R(x)=\infty
$$

There is a third type of asymptote called an oblique asymptote. An oblique asymptote occurs when the graph's end behavior follows an oblique line (a linear function of the form $y=m x+b, m \neq 0$).

A graph may also approach some function such as a parabola, but since asymptotes are defined as straight lines, we do not refer to these as asymptotes.

* Note: The graph of a function may intersect a horizontal or oblique asymptote at
 some other point, but the graph will never intersect a vertical asymptote.

Finding the Vertical Asymptotes of a Rational Function

A rational function $R(x)=\frac{p(x)}{q(x)}$, in lowest terms will have a vertical asymptote at $x=r$ if r is a real zero of the denominator q. That is, if $x-r$ is a factor of the denominator q of the rational function in lowest terms, it will have the vertical asymptote $x=r$.
\star Simplify before finding the vertical asymptotes! If the rational function is not in lowest terms, this theorem will result in an incorrect listing of vertical asymptotes.

Example: Find the domain and the vertical asymptotes, if any, of the graph of each rational function.
a) $R(x)=\frac{x+1}{x^{2}-9}$
b) $R(x)=\frac{x+2}{x^{2}-3 x-10}$
c) $R(x)=\frac{x}{x^{3}+10 x^{2}+9 x}$
d) $R(x)=\frac{x^{2}}{x^{2}+4}$
\star Note: The graph of a rational function can have several vertical asymptotes, but it will never have multiple horizontal or oblique asymptotes, and it cannot have both a horizontal and an oblique asymptote. It will either have one horizontal asymptote, one oblique asymptote, or neither.

Find the Horizontal or Oblique Asymptotes of a Rational Function

- If degree of numerator < degree of denominator, the graph has a horizontal asymptote at $y=0$.
- If degree of numerator $=$ degree of denominator, the graph has a horizontal asymptote at the line $y=\frac{\text { leading coefficient of the numerator }}{\text { leading coefficient of the denominator }}$.
- If degree of numerator $>$ degree of denominator (by one), the graph has an oblique asymptote of $y=m x+b$ found by performing long or synthetic division.
- If degree of numerator $>$ degree of denominator (by more than one), then R has neither a horizontal nor an oblique asymptote, but the end behavior can be determined using long or synthetic division.

Examples: Find the horizontal or oblique asymptotes, if any, of the graph of the function.
a) $R(x)=\frac{x+5}{x^{2}-3 x-10}$
b) $H(x)=\frac{6 x^{2}-2 x+5}{3 x^{2}-2}$
c) $H(x)=\frac{8 x^{3}+2 x^{2}-6}{2 x^{2}-3}$
d) $H(x)=\frac{3 x^{4}+4 x^{2}-7}{x^{2}-2 x+5}$

Summary:

Given a rational function $R(x)=\frac{p(x)}{q(x)}$,

1. Domain: Set the denominator of the unsimplified function not equal to zero and solve.
2. \boldsymbol{x}-intercept(s): Set the numerator of the simplified function equal to zero and solve.
3. y-intercept: Plug in $x=0$. (You can do this before or after simplifying the function, but remember, if zero is not in the domain, the function has no y-intercept.)
4. Holes: Find the x-coordinates by setting factors that cancel out equal to zero and solving. Find the y-coordinate by plugging the x-coordinate into the simplified function.
5. Vertical Asymptote(s): Set the denominator of the simplified function equal to zero and solve.

6. Horizontal or Oblique Asymptote:

- If degree of numerator < degree of denominator, the graph has a horizontal asymptote at $y=0$.
- If degree of numerator $=$ degree of denominator, the graph has a horizontal asymptote at the line $y=\frac{\text { leading coefficient of the numerator }}{\text { leading coefficient of the denominator }}$.
- If degree of numerator $>$ degree of denominator (by one), the graph has an oblique asymptote of $y=m x+b$ found by performing long or synthetic division.
- If degree of numerator $>$ degree of denominator (by more than one), then R has neither a horizontal nor an oblique asymptote, but the end behavior can be determined using long or synthetic division.

