2.3 Homework - Polynomial Graphs

Determine which functions are polynomials. For those that are, state the degree. For those that are not, explain why not.

1. $f(x)=\frac{3-2 x^{3}}{5}$
2. $F(x)=\frac{4 x^{2}-3}{2 x^{3}}$
3. $g(x)=x^{5 / 2}-x^{4}+2$
4. $h(x)=-3$
5. $G(x)=2(x+3)^{2}\left(x^{2}+4\right)$
6. $f(x)=\sqrt{x}(\sqrt{x}+2)$
7. $h(x)=\frac{1}{2}-\pi x$
8. $g(x)=2 x^{-3}+x^{2}$

Graph the functions using transformations of the graphs of $y=x^{4}$ or $y=x^{5}$.
9. $f(x)=\frac{1}{2} x^{5}-4$
10. $f(x)=2-(x+3)^{4}$ (Hint: Rearrange)

Form a polynomial function with real coefficients whose degree and real zeros are given. Your answer must be completely multiplied out (not in factored form).
11. Degree 3; Zeros: -1, 3, 5
12. Degree 3; Zeros: -7, 0, 2
13. Degree 4; Zeros: -4 , multiplicity 2 ; 1 , multiplicity $1 ; 2$, multiplicity 1

For each polynomial function, do the following:
(a) List each real zero and its multiplicity.
(b) Determine whether the graph crosses or touches the x-axis at each x-intercept.
(c) Find the y-intercept.
(d) Determine the end behavior: Find the power function that the graph of f resembles for large values of $|x|$ AND draw arrows to indicate which directions the ends are pointing.
(e) Determine the maximum number of turning points of the graph. YOU DO NOT NEED TO DRAW THE GRAPH!
14. $f(x)=-4\left(x+\frac{1}{2}\right)^{2}(x-1)^{3}$
15. $f(x)=\left(x^{2}+4\right)(x-5)^{3}$
16. $f(x)=3 x\left(x^{2}-4\right)(x+5)$

For each polynomial function, do the following:
(a) List each real zero and its multiplicity.
(b) Determine whether the graph crosses or touches the x-axis at each x-intercept.
(c) Find the y-intercept.
(d) Determine the end behavior: Find the power function that the graph of f resembles for large values of $|x|$ AND draw arrows to indicate which directions the ends are pointing.
(e) Determine the maximum number of turning points of the graph.
(f) SKETCH THE GRAPH:
17. $f(x)=x^{2}(x-3)(x+3)$
18. $f(x)=3(x-6)(x+4)^{2}$
19. $f(x)=-2(x+2)(x-1)^{3}$
20. $f(x)=\frac{1}{2}(x-3)^{2}(x+2)^{2}$
21. $f(x)=-4 x\left(x^{2}-5\right)$ Hint: It can be factored further - there are three real zeros!
22. Is it possible for the graph of a polynomial function have no y-intercept? Explain why or why not. Is it possible for the graph of a polynomial function to have no x-intercepts? Explain why or why not.

