Precalculus 2.3 Homework – Polynomial Graphs

Determine which functions are polynomials. For those that are, state the degree. For those that are not, explain why not.

1.
$$f(x) = \frac{3-2x^3}{5}$$

2. $F(x) = \frac{4x^2-3}{2x^3}$
3. $g(x) = x^{5/2} - x^4 + 2$
4. $h(x) = -3$
5. $G(x) = 2(x+3)^2(x^2+4)$
6. $f(x) = \sqrt{x}(\sqrt{x}+2)$
7. $h(x) = \frac{1}{2} - \pi x$
8. $g(x) = 2x^{-3} + x^2$

Graph the functions using transformations of the graphs of $y = x^4$ or $y = x^5$.

9.
$$f(x) = \frac{1}{2}x^5 - 4$$
 10. $f(x) = 2 - (x+3)^4$ (Hint: Rearrange)

Form a polynomial function with real coefficients whose degree and real zeros are given. Your answer must be completely multiplied out (not in factored form).

11. Degree 3; Zeros: -1, 3, 5 12. Degree 3; Zeros: -7, 0, 2

13. Degree 4; Zeros: -4, multiplicity 2; 1, multiplicity 1; 2, multiplicity 1

For each polynomial function, do the following:

- (a) List each real zero and its multiplicity.
- (b) Determine whether the graph crosses or touches the x-axis at each x-intercept.
- (c) Find the y-intercept.
- (d) Determine the end behavior: Find the power function that the graph of f resembles for large values of |x| AND draw arrows to indicate which directions the ends are pointing.
- (e) Determine the maximum number of turning points of the graph. YOU DO NOT NEED TO DRAW THE GRAPH!

14. $f(x) = -4(x+\frac{1}{2})^2(x-1)^3$ 15. $f(x) = (x^2 + 4)(x-5)^3$ 16. $f(x) = 3x(x^2 - 4)(x+5)$

For each polynomial function, do the following:

- (a) List each real zero and its multiplicity.
- (b) Determine whether the graph crosses or touches the x-axis at each x-intercept.
- (c) Find the v-intercept.
- (d) Determine the end behavior: Find the power function that the graph of f resembles for large values of |x| AND draw arrows to indicate which directions the ends are pointing.
- (e) Determine the maximum number of turning points of the graph.

(f) SKETCH THE GRAPH!

- 17. $f(x) = x^2(x-3)(x+3)$ 18. $f(x) = 3(x-6)(x+4)^2$
- 19. $f(x) = -2(x+2)(x-1)^3$ 20. $f(x) = \frac{1}{2}(x-3)^2(x+2)^2$
- 21. $f(x) = -4x(x^2 5)$ Hint: It can be factored further there are three real zeros!
- 22. Is it possible for the graph of a polynomial function have no y-intercept? Explain why or why not. Is it possible for the graph of a polynomial function to have no x-intercepts? Explain why or why not.