Limits Involving Infinity

Last time we talked about the general idea of what a limit is and found some nice properties that made a complicated idea easy to figure. Each time we asked what happens as $x \rightarrow c$ or $\lim _{x \rightarrow c} f(x)$. Now we look at limits as x goes to ∞ or $-\infty$ or $\lim _{x \rightarrow \infty} f(x)$. ∞ is not a number we can plug in. We need to see what happens to $f(x)$ as x moves further to the right toward ∞. The same is true for $-\infty$, we can have $\lim _{x \rightarrow-\infty} \mathrm{f}(\mathrm{x})$. We figure it the same way.

Example: Think of $f(x)=\frac{1}{x}$ the inverse (reciprocal) function. As $\mathrm{x} \rightarrow \infty \mathrm{f}(\mathrm{x})=0$ so $\lim _{x \rightarrow \infty} \frac{1}{x}=0 \quad \lim _{x \rightarrow-\infty} \frac{1}{x}=0 \quad$ When a graph "straightens out" it is said to have asymptotic behavior. The graph approaches a line. In this example the line it approaches is horizontal. It has a horizontal asymptote. $(\mathrm{y}=0)$.

In general if $\lim _{x \rightarrow \infty} f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=b$ then $\mathrm{y}=\mathrm{b}$ is a horizontal asymptote.
Example: $y=\frac{1}{x}-1 \quad \lim _{x \rightarrow \infty} \frac{1}{x}-1=-1 \quad y=-1$ is the horizontal asymptote

What a graph starts to look like is also called the end behavior. Calculators can be helpful although we shouldn't rely on it. Approach problems graphically, numerically, and analytically

Example: $f(x)=\frac{x}{\sqrt{x^{2}+1}}$

Example: $f(x)=\frac{\sin (x)}{x}$

Recall Sandwich theorem:

$$
\begin{aligned}
-1 \leq \sin (x) \leq 1 & \text { so } \frac{-1}{x} \leq \frac{\sin (x)}{x} \leq \frac{1}{x} \\
& \lim _{x \rightarrow \infty} \lim _{x \rightarrow \infty} \lim _{x \rightarrow \infty} \\
& 0 \leq \quad \leq 0 \quad \frac{\sin x}{x} \text { is even }
\end{aligned}
$$

Just as with limits as $x \rightarrow c$, we have nice properties of limits as $x \rightarrow \pm \infty$. Theorem 5 gives the properties of these limits. They are Sum, difference, product, constant multiple, quotient and power rules.

Example:
$f(x)=\frac{1}{x^{2}}$ find $\lim _{x \rightarrow 2}$ simply plug in,
but find $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ you can't plug in...graph
Does $f(x)$ have a limit as $x \rightarrow 0$? Remember $\lim _{x \rightarrow c^{+}}$must equal $\lim _{x \rightarrow c^{-}}$In this case, yes it does.

Example: $h(x)=\frac{1}{x}$
The limits are not equal, so there is no limit.

$$
\lim _{x \rightarrow 0^{-}} h(x)=-\infty \lim _{x \rightarrow 0^{+}} h(x)=+\infty
$$

What about asymptotes? $\mathrm{x}=0$
If $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ then the $\mathrm{x}=a$ is a vertical asymptote
What are some functions that have vertical asymptotes?
Rational functions \& Trig functions
Example: $f(x)=\frac{x}{x^{2}-4}$ or $g(x)=\tan (x)=\frac{\sin x}{\cos x}$
You might think that asymptotes occur whenever the denominator is zero. Not always true!
Consider $f(x)=\frac{\sin (x)}{x}$
Earlier we talked about end behavior. What happens for "very large values" of x ?

Definition: End behavior Model:

The function g is
(a) a right end behavior model for f if and only if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$
(b) a left end behavior model for f if and only if $\lim _{x \rightarrow-\infty} \frac{f(x)}{g(x)}=1$

The right end and left end behavior do not need to be the same.
Example: $f(x)=2 x^{3}-3 x+4$
Which terms really make a difference as x gets really large? Only $2 \mathrm{x}^{3}$ so $\mathrm{g}(\mathrm{x})=2 \mathrm{x}^{3}$ is an end behavior model. \quad Analytically $\lim _{x \rightarrow \infty} \frac{2 x^{3}-3 x+4}{2 x^{3}}=\frac{2 x^{3}}{2 x^{3}}-\frac{3 x}{2 x^{3}}+\frac{4}{2 x^{3}}=1$

Find a simple basic function EBM for $f(x)=e^{-x}-2 x$
Use end behavior to find asymptotes:

$$
f(x)=\frac{2 x^{5}+x^{4}-x^{2}+1}{3 x^{2}-5 x+7} \quad f(x)=\frac{2 x^{3}-x^{2}+x-1}{5 x^{3}+x^{2}+x-5} \quad f(x)=\frac{x-2}{2 x^{2}+3 x-5}
$$

There is an interesting truth that can be used to find difficult limits. If $\mathrm{x} \rightarrow \infty$ what happens to $\frac{1}{x}$? It approaches 0 . We can use this to rewrite limits.

Example:
$\lim _{x \rightarrow \infty} x e^{x}=?$
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow 0} f\left(\frac{1}{x}\right)$ so $\lim _{x \rightarrow 0} \frac{e^{\frac{1}{x}}}{x}$

