Quadratic Functions and Their Properties

Quadratic Function: A function that can be written in the form $f(x) = ax^2 + bx + c$, where *a*, *b*, and *c* are real numbers and where $a \neq 0$. The domain of a quadratic function is the set of all real numbers.

Graphing a Quadratic Function Using Transformations

- 1. Begin with the parent function $f(x) = x^2$.
- 2. Rewrite the function in vertex form $f(x) = a(x-h)^2 + k$ by completing the square.
- 3. Transform with the following:
 - *a*: If *a* is positive, the graph opens ______. The *y*-coordinate of the vertex is a ______ value. If *a* is negative, the graph opens ______. The *y*-coordinate of the vertex is a ______ value. If |a| > 1, the graph is ______ than the graph of $f(x) = x^2$. If |a| < 1, the graph is ______ than the graph of $f(x) = x^2$.
 - *h*: *h* is the *opposite* of the number with *x*. It controls the horizontal shift (left and right).
 - k: k controls the vertical shift (up and down).

Vertex: (h, k) Axis of Symmetry: x = h

Completing the Square: Figuring out what constant to add to a binomial of the form $x^2 + bx$ to make it into a perfect square trinomial, then writing the result in factored form.

Example: Add the proper constant to the binomial to make it into a perfect square trinomial. Then factor the trinomial.

Completing the Square for the Binomial $x^2 + bx$

- 1. Divide the coefficient of the *x*-term by 2. (Find $\frac{b}{2}$).
- 2. Square the answer from step 1. $\left(\text{Find} \left(\frac{b}{2} \right)^2 \right)$.
- 3. Add the result of step 2 to the binomial.
- 4. Rewrite as a perfect square: $\left(x + \frac{b}{2}\right)^2$.

Examples: Add the proper constant to each binomial to make it into a perfect square trinomial. Then factor the trinomial.

a) $x^2 + 16x + \underline{\qquad} = (x \underline{\qquad})^2$ b) $x^2 - 3x + \underline{\qquad} = (x \underline{\qquad})^2$ c) $x^2 + \frac{4}{3}x + \underline{\qquad} = (x \underline{\qquad})^2$

Writing $f(x) = ax^2 + bx + c$ in Vertex Form

- 1. Group ax^2 and bx together in parentheses.
- 2. If $a \neq 1$, factor out a from $ax^2 + bx$. Include a negative if the quadratic term is negative.
- 3. Complete the square (divide *b* by 2 and square the result). Add the answer inside the parentheses. Keep the equation balanced by adding or subtracting outside the parentheses. (You are adding 0 to one side of the equation.) Remember to take into account that anything you add inside the parentheses is being multiplied by anything that was factored out!
- 4. Write the expression inside the parentheses as a perfect square.

Examples: Write each equation in vertex form by completing the square. Find the vertex, axis of symmetry, maximum or minimum value, and draw the graph of the function.

a) $f(x) = x^2 - 8x + 13$

c) $f(x) = 3x^2 + 6x - 7$

d)
$$y = -2x^2 + 12x - 13$$

e)
$$f(x) = \frac{1}{2}x^2 + 6x + 15$$

The Vertex Formula

By completing the square, we can rewrite
$$f(x) = ax^2 + bx + c$$
 as $f(x) = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$

This gives us a quick way to find the vertex when the equation is in standard form:

- The *x*-coordinate of the vertex is $\frac{-b}{2a}$.
- To find the *y*-coordinate, plug the *x*-coordinate into the original equation.

Properties of the Graph of a Quadratic Function

For the function, $f(x) = ax^2 + bx + c$, $a \neq 0$:

Vertex:
$$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$$
 Axis of Symmetry : The line $x = \frac{-b}{2a}$

Parabola opens up if a > 0; the vertex is a minimum point. Parabola opens down if a < 0; the vertex is a maximum point. **Examples:** Use the vertex formula to locate the vertex and axis of symmetry of the parabola. Determine whether the quadratic function has a maximum or minimum value, then find the value.

a) $f(x) = x^2 - 6x - 8$ b) $f(x) = -4x^2 + 2x + 1$

Intercepts of Quadratic Graphs

The y-intercept is the value of f at x = 0; that is, the y-intercept is f(0) = c.

The *x*-intercepts, if any, are found by solving the quadratic equation $ax^2 + bx + c = 0$.

Discriminant	Solutions of $ax^2 + bx + c = 0$	Graph of $f(x) = ax^2 + bx + c$
$b^2 - 4ac > 0$	Two real solutions	Two <i>x</i> -intercepts
$b^2 - 4ac = 0$	One real solution	One <i>x</i> -intercept
$b^2 - 4ac < 0$	Two imaginary solutions	No x-intercepts

Examples: Find the *x*- and *y*-intercepts of the graph of each function. a) $f(x) = 2x^2 + 7x - 30$ b) $y = x^2 - 6x + 4$ c) $f(x) = -3x^2 + 8x - 7$

Writing a Quadratic Equation when You Know the Vertex and Another Point

- 1. Use vertex form: $y = a(x-h)^2 + k$
- 2. Plug in the vertex for *h* and *k*.
- 3. Plug in the other point for x and y (or f(x)).
- 4. Simplify and solve for *a*. (Don't forget order of operations.)
- 5. Write your final answer by plugging a, h, and k back into vertex form.

Example: Find the quadratic function whose vertex is (3, -2) and whose y-intercept is 4. Graph the function.

	Standard Form	Vertex Form	Factored Form
Equation	$y = ax^2 + bx + c$	$y = a\left(x-h\right)^2 + k$	y = a(x-p)(x-q)
Vertex	Complete the square and write in vertex form. -or- $x = \frac{-b}{2a}$ Plug the <i>x</i> -coordinate into the equation to get the <i>y</i> -coordinate.	(h,k) (opposite of # with x, # at end)	Find average of p and q. $x = \frac{p+q}{2}$ (The x-coordinate of the vertex is at the midpoint of the x-intercepts.) Plug the x-coordinate into the equation to get the y-coordinate.
y-intercept	<i>c</i> (Replace <i>x</i> with zero. Solve for <i>y</i> .)	Replace <i>x</i> with zero. Solve for <i>y</i> .	Replace x with zero. Solve for y.
<i>x</i> -intercepts (roots, zeros)	Replace y with zero. Solve for x by factoring or quadratic formula.	Replace y with zero. Solve for x by isolating the perfect square and using the square root principle. (Don't forget the \pm .)	<i>p</i> and <i>q</i> (Replace <i>y</i> with zero. Solve for <i>x</i> using the zero product property.)

For all forms:

Direction of Opening	Up if <i>a</i> is positive Down if <i>a</i> is negative	
Vertical Stretch	а	
Counting Pattern (Shortcut)	Start at the vertex. Find more points by counting: $\leftrightarrow 1, \uparrow a$ $\leftrightarrow 1, \uparrow 3a$ $\leftrightarrow 1, \uparrow 5a$ $\leftrightarrow 1, \uparrow 7a$, etc. (If <i>a</i> is negative, move down instead of up.)	