Precalculus

11.3 HW Answers

1. a. $\quad\left({ }_{6} C_{2}\right)(0.2)^{2}(0.8)^{4}=0.24576$ or binomialpdf $(n=6, p=0.2, k=2)=0.24576$
b. $X=$ \# of wins: $\begin{array}{lllllll}\mathbf{0} & \mathbf{1} & \mathbf{2} & 3 & 4 & 5 & 6\end{array}$
$P(X \leq 2)=$ binomialcdf $(n=6, p=0.2, k=2)=0.90112$
c. $X=$ \# of wins: $\begin{array}{lllllll}0 & 1 & 2 & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6}\end{array}$
$P(X>2)=1-P(X \leq 2)=1-\operatorname{binomialcdf}(n=6, p=0.2, k=2)=0.09888$
2. a. $\left({ }_{7} C_{4}\right)\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{3} \approx 0.1280$ or binomialpdf $\left(n=7, p=\frac{1}{3}, k=4\right) \approx 0.1280$
b. $X=$ \# of times freight elevator responds: $\begin{array}{llllllll}\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & 4 & 5 & 6 & 7\end{array}$
$P(X<4)=P(X \leq 3)=\operatorname{binomialcdf}\left(n=7, p=\frac{1}{3}, k=3\right) \approx 0.8267$
c. $X=$ \# of times freight elevator responds: $\begin{array}{llllllll}0 & 1 & 2 & 3 & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7}\end{array}$
$P(X \geq 4)=1-P(X \leq 3)=1-\operatorname{binomialcdf}\left(n=7, p=\frac{1}{3}, k=3\right) \approx 0.1733$
 $P(X \geq 19)=1-P(X \leq 18)=1$-binomialcdf $(n=25, p=0.5, k=18) \approx 0.0073$
3. a. 2 misses, then bullseye: $(0.75)^{2}(0.25)=0.140625$ or geometricpdf $(p=0.25, k=3)=0.140625$
b. $X=$ shot when first bullseye occurs: $\mathbf{1 2} \mathbf{2} 45 \ldots$
$P(X \leq 3)=P(X=1)+P(X=2)+P(X=3)=0.25+(0.75)(0.25)+(0.75)^{2}(0.25)=0.578125$ or geometriccdf $(p=0.25, k=3)=0.578125$
c. $X=$ Shot when first bullseye occurs: $1 \quad 2 \quad 3 \quad \underline{\mathbf{4}}$...
$P(X>3)=P($ no bullseyes in first 3 shots $-\mathrm{F}, \mathrm{F}, \mathrm{F})=(0.75)^{3}=0.421875$
or $P(X>3)=1-P(X \leq 3)=1-$ geometriccdf $(p=0.25, k=3)=0.421875$
4. a. $\quad\left({ }_{20} C_{0}\right)(0.03)^{0}(0.97)^{20}=(0.97)^{20} \approx 0.5438$ or binomialpdf $(n=20, p=0.03, k=0) \approx 0.5438$
b. $X=$ \# of defective fuses: $\begin{array}{llllllllll}0 & 1 & 2 & 3 & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \ldots & \mathbf{2 0}\end{array}$
$P(X>3)=1-P(X \leq 3)=1-\operatorname{binomialcdf}(n=20, p=0.03, k=3) \approx 0.0027$
c. $X=$ \# of defective fuses: $\begin{array}{lllllllll}\mathbf{0} & \mathbf{1} & 2 & 3 & 4 & 5 & 6 & 7 \ldots\end{array}$
$P(X<2)=P(X \leq 1)=\operatorname{binomialcdf}(n=20, p=0.03, k=1) \approx 0.8802$
5. a. 7 non-doubles, then doubles: $\left(\frac{5}{6}\right)^{7}\left(\frac{1}{6}\right) \approx 0.0465$ or geometricpdf $\left(p=\frac{1}{6}, k=8\right) \approx 0.0465$
b. $X=$ roll when first doubles occurs: $\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$..
$P(X<8)=P(X \leq 7)=$ geometriccdf $\left(p=\frac{1}{6}, k=7\right) \approx 0.7209$
or $P(1$ st doubles before 8 th turn $)=1-P($ no doubles in first 7 turns $)=1-\left(\frac{5}{6}\right)^{7} \approx 0.7209$
c. $X=$ roll when first doubles occurs: $1 \begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \mathbf{9} & \mathbf{1 0} \ldots\end{array}$
$P(X>8)=1-P(X \leq 8)=1$ - geometriccdf $\left(p=\frac{1}{6}, k=8\right) \approx 0.2326$
or $P(1$ st doubles after 8 th turn $)=P($ no doubles on 1 st 8 turns $)=\left(\frac{5}{6}\right)^{8} \approx 0.2326$
d. $\quad\left({ }_{15} C_{3}\right)\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{12} \approx 0.2363$ or binomialpdf $\left(n=15, p=\frac{1}{6}, k=3\right) \approx 0.2363$
e. $Y=\#$ of doubles in 15 rolls: $\begin{array}{llllllll}0 & 1 & 2 & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \ldots\end{array}$ $P(Y \geq 3)=1-P(Y \leq 2)=1-\operatorname{binomialcdf}\left(n=15, p=\frac{1}{6}, k=2\right) \approx 0.4678$
f. $Y=$ \# of doubles in 15 rolls: $\begin{array}{llllllll}\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & 4 & 5 & 6 & \ldots\end{array}$
$P(Y \leq 3)=\operatorname{binomialcdf}\left(n=15, p=\frac{1}{6}, k=3\right) \approx 0.7685$
6. a. $\left({ }_{4} C_{3}\right)(0.88)^{3}(0.12)^{1} \approx 0.3271$ or binomialpdf $(n=4, p=0.88, k=3) \approx 0.3271$
b. $\quad\left({ }_{4} C_{4}\right)(0.88)^{4}(0.12)^{0}=(0.88)^{4} \approx 0.5997$ or binomialpdf $(n=4, p=0.88, k=4) \approx 0.5997$
c. $X=$ \# of experts who detect TB: $\begin{aligned} & \mathbf{0}\end{aligned} \mathbf{1} 2234$
$P(X \leq 2)=\operatorname{binomialcdf}(n=4, p=0.88, k=2) \approx 0.0732$
7. a. 4 non-black, then black: $\left(\frac{20}{38}\right)^{4}\left(\frac{18}{38}\right) \approx 0.0363$ or geometricpdf $\left(p=\frac{18}{38}, k=5\right) \approx 0.0363$
b. $X=$ spin on which first black occurs: $\begin{array}{llllll}1 & 2 & \mathbf{4} & \mathbf{5} & \mathbf{6} \ldots\end{array}$ $P(X>3)=1-P(X \leq 3)=1-$ geometriccdf $\left(p=\frac{18}{38}, k=3\right) \approx 0.1458$ or $P($ more than 3 spins to first black $)=P($ no blacks in first 3$)=\left(\frac{20}{38}\right)^{3} \approx 0.1458$

c. $X=$ spin on which first black occurs: ... 28 29 | 30 | 31 | 32 | $\mathbf{3 3}$ | $\mathbf{3 4}$ | $\mathbf{3 5} \ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $P(X>32)=1-P(X \leq 32)=1$ - geometriccdf $\left(p=\frac{18}{38}, k=32\right) \approx 0.0000000012$

or $P($ more than 32 spins to first black $)=P($ no blacks in first 32$)=\left(\frac{20}{38}\right)^{32} \approx 0.0000000012$

