
10.4 notes calculus  

Radius of Convergence 

 

Let’s take a closer look at what actually makes a series work.  The real question is: “what are the rules for 

working with a series and when we can use them.”  If a series converges then it represents a number, so 

we can treat it like a number.  All the familiar operations and rules apply.  If it doesn’t converge then we 

have very few tools to work with.  

 

Remember that 
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identities.  One side can be substituted for the other.  However, in the last example there is one time when 

they are not equivalent.  This is also true with the series we use to represent functions.   
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For what values of x is this an identity? 

 

This holds only for the interval of convergence.  

We can see this graphically, we can apply reason to it (r>-1, r<1) and because it’s geometric, we have an 

analytic proof of convergence.  

 

What if it weren’t geometric? 

We need some strategies for dealing with series that are not familiar and we still need to determine when 

they converge and can be treated as functions or numbers.  So far, we have developed a few series and 

their intervals of convergence.   

 

We can put these power series in three categories.   

 

Theorem 5  The Convergence Theorem for Power Series.  
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There is a positive number R such that the series diverges for x a R   but converges for x a R  .  

The series may or may not converge at either of the endpoints x = a -R and x = a +R 

(Converges on a finite interval about the center) 

2.  The series converges for every x (R = ∞)   (Converges on an infinite interval about the center) 

3.  The series converges at x = a and diverges elsewhere (R =0)   (Converges only at center) 

 

The capital letter R is used for a reason.  Because our series are developed around a center (Taylor x = a) 

we can figure out how far on either side they converge…like a radius.  Therefore, this distance is called 

the Radius of convergence.  (So the number R is the radius of convergence and the set of all values of x 

for which the series converges is the interval of convergence.) 
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We’ll figure out the endpoints in section 10.5.   

Right now we learn how to determine the radius. The easiest thing to figure out is if the series diverges 

because the terms never get small.  We saw the series 1+2+3+4…. at the beginning of the chapter.   



Theorem 6:  The nth Term Test for Divergence 
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Recall the sandwich theorem for functions used in chapter 2.  We used two well known functions with 

limits to sandwich another function thereby determine its limit.  This is the first tool we will use to 

determine convergence or divergence of a new series.  

 

Theorem 7:  The Direct comparison Test  

Let na be a series with no negative terms.   

na  converges if there is a convergent series nc  with n na c  for all n > N, for some integer N.  

na  diverges if there is a divergent series nd  of nonnegative terms with n na d  for all n > N, for 

some integer N.  

 

 

We just need to show that beyond a certain point the new series is always above or below a divergent or 

convergent series.  

 

To use this effectively, we need to have a good handle on common series that converge and diverge.  1/n 

diverges,  
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In general, it can be difficult to use the comparison test for convergence because you have to know a 

series that converges and it must be easily compared.  However, comparison is useful especially if it 

jumps out at you.   

 

Sometimes we might know of a good comparison, but the series is alternating or negative.  

 

Example:  
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This leads to the idea of absolute convergence.  



Definition:  Absolute convergence 

If the series na  of absolute values converges, then na  converges absolutely. 

Theorem 8:  Absolute Convergence Implies Convergence 

If na  converges, then na converges.  

 

The worst thing that could happen is that all of the terms could be negative.  If this happened, we could 

just factor a negative out.  If only some of them were negative, we take our answer and “subtract” those 

terms.  It would still converge.  
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0

(sin )

!

n

n

x

n





  

 

 

 

The next thing we will discuss is a powerful test to determine convergence and also figure out the radius 

of convergence for an arbitrary power series.  It is called the ratio test.  

 

Theorem 9:  The Ratio Test 

Let na  be a series with positive terms, and with 1lim n
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a.  The series converges if  L< 1 

b.  The series diverges if  L > 1 

c.  The test is inconclusive if L = 1 

 

Think about what this is saying:  If this limit is bigger than 1, then the “next” term is some fraction bigger 

than the previous term.  There is no way the series can converge because the terms are getting larger.  

 

If the limit is less than one the “next” term is some fraction smaller than the previous term.  This means 

that it would behave similar to a geometric series with r<1 (r = ratio between the terms)  

 

Oddly enough, if r = 1, we get no information.  

 

You might want to be aware that L’Hopital’s rule may be useful in evaluating this limit if it’s in 

indeterminate form.  
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With problem 36. out of the way, let’s add a slight twist.  
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Occasionally we will run across a unique type of series that is not geometric and yet we can determine the 

exact value of the infinite sum.  

 

Example 7       
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This is called a collapsing or telescoping series.  
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Part of the assignment is to complete Exploration 2 on page 513 in preparation for 10.5 


