
Precalculus – 10.3 Notes 
Geometric Sequences and Geometric Series 

 

A geometric sequence is one in which the ratio of successive terms is always the same nonzero number. 

 

A geometric sequence may be defined recursively as 1 1,  ,
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Examples: Find the common ratio of each geometric sequence and write out the first four terms. 
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 To determine whether a sequence is arithmetic, geometric, or neither, find 
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 is constant, the sequence is geometric. 

 

Examples: Determine whether the given sequence is arithmetic, geometric, or neither. If it is arithmetic, give 

the common difference. If it is geometric, give the common ratio. 
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nth Term of a Geometric Sequence: For a geometric sequence { }n
a  whose first term is 1a  and whose 

common ratio is ,r  the nth term is determined by the formula 
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Examples: Find the nth term and the 5th term of the geometric sequence. 
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Examples: Find the indicated term of each geometric sequence. 

a) 8th term of 1, 3, 9, …    b) 7th term of 9, –6, 4, … 

 

 

 

 

 

 

Examples: Find the nth term of each geometric sequence. 

a) 5, 10, 20, 40, …   b) 2 7,  1 4a r= =   c) 3 61 3,  1 81a a= =  

 

 

 

 

 

 

Sum of the First n Terms of a Geometric Sequence 

The sum 
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S  of the first n terms of a geometric sequence { }n
a  with first term 1a  and common ratio r  is given 
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Examples: Find each sum. 
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Infinite Series: An infinite geometric series is the sum of the terms of an infinite geometric sequence. It is 

denoted by 1
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it is a divergent series. 
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Examples: Determine whether each geometric series converges or diverges. If it converges, find its sum. 
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