Geometric Sequences and Geometric Series

A geometric sequence is one in which the ratio of successive terms is always the same nonzero number.

A *geometric sequence* may be defined recursively as $a_1 = a$, $a_n = ra_{n-1}$, where *a* is the first term and $r \neq 0$ is the *common ratio*. The terms of a geometric sequence with first term a_1 and common ratio $r = \frac{a_n}{a_{n-1}}$ follow the pattern a_1 , a_1r , a_1r^2 , a_1r^3 ,..., a_1r^{n-1} .

Examples: Find the common ratio of each geometric sequence and write out the first four terms.

a)
$$\{b_n\} = \{(-5)^n\}$$
 b) $\{u_n\} = \{\frac{2^n}{3^{n-1}}\}$

★ To determine whether a sequence is arithmetic, geometric, or neither, find a_n and a_{n-1} . If $a_n - a_{n-1}$ is constant, the sequence is arithmetic. If $\frac{a_n}{a_{n-1}}$ is constant, the sequence is geometric.

Examples: Determine whether the given sequence is arithmetic, geometric, or neither. If it is arithmetic, give the common difference. If it is geometric, give the common ratio.

a)
$$\left\{5n^2+1\right\}$$
 b) $\left\{\left(\frac{5}{4}\right)^n\right\}$

*n*th Term of a Geometric Sequence: For a geometric sequence $\{a_n\}$ whose first term is a_1 and whose common ratio is r, the *n*th term is determined by the formula $a_n = a_1 r^{n-1}$; $r \neq 0$.

Examples: Find the *n*th term and the 5th term of the geometric sequence.

a)
$$a_1 = -2$$
, $r = 4$
b) $a_1 = 1$, $r = -\frac{1}{3}$

Examples: Find the indicated term of each geometric sequence. a) 8th term of 1, 3, 9, ... b) 7th term of 9, -6, 4, ...

Examples: Find the *n*th term of each geometric sequence. a) 5, 10, 20, 40, ... b) $a_2 = 7$, r = 1/4c) $a_3 = 1/3$, $a_6 = 1/81$

Sum of the First *n* Terms of a Geometric Sequence

The sum S_n of the first *n* terms of a geometric sequence $\{a_n\}$ with first term a_1 and common ratio *r* is given

by
$$S_n = \sum_{k=1}^n a_1 r^{k-1} = a_1 \cdot \frac{1-r^n}{1-r}$$
, where $r \neq 0, 1$.

Examples: Find each sum.

a)
$$\frac{3}{9} + \frac{3^2}{9} + \frac{3^3}{9} + \dots + \frac{3^n}{9}$$
 b) $\sum_{k=1}^{15} 4 \cdot 3^{k-1}$

c)
$$2 + \frac{6}{5} + \frac{18}{25} + \dots + 2\left(\frac{3}{5}\right)^{15}$$
 d) $\sum_{k=1}^{5} \left(\frac{2}{3}\right)^{k}$

Infinite Series: An infinite geometric series is the sum of the terms of an infinite geometric sequence. It is denoted by $\sum_{k=1}^{\infty} a_1 r^{k-1}$. If the sum of the first *n* terms of the geometric sequence, S_n , approaches a number *L* as $n \to \infty$, we say that the infinite geometric series *converges* and that its sum is *L*. If a series does not converge, it is a *divergent series*.

If
$$|r| < 1$$
, the infinite geometric series $\sum_{k=1}^{\infty} a_1 r^{k-1}$ converges. Its sum is $S = \frac{a_1}{1-r}$.

Examples: Determine whether each geometric series converges or diverges. If it converges, find its sum. a) $2 + \frac{4}{3} + \frac{8}{9} + ...$ b) $9 + 12 + 16 + \frac{64}{3} + ...$

c)
$$1 - \frac{3}{4} + \frac{9}{16} - \frac{27}{64} + \dots$$
 d) $\sum_{k=1}^{\infty} 3\left(\frac{3}{2}\right)^{k-1}$

e)
$$\sum_{k=1}^{\infty} 4 \left(-\frac{2}{5}\right)^k$$