## Geometric Sequences and Geometric Series

A geometric sequence is one in which the ratio of successive terms is always the same nonzero number.
A geometric sequence may be defined recursively as $a_{1}=a, a_{n}=r a_{n-1}$, where $a$ is the first term and $r \neq 0$ is the common ratio. The terms of a geometric sequence with first term $a_{1}$ and common ratio $r=\frac{a_{n}}{a_{n-1}}$ follow the pattern $a_{1}, a_{1} r, a_{1} r^{2}, a_{1} r^{3}, \ldots, a_{1} r^{n-1}$.

Examples: Find the common ratio of each geometric sequence and write out the first four terms.
a) $\left\{b_{n}\right\}=\left\{(-5)^{n}\right\}$
b) $\left\{u_{n}\right\}=\left\{\frac{2^{n}}{3^{n-1}}\right\}$
$\star$ To determine whether a sequence is arithmetic, geometric, or neither, find $a_{n}$ and $a_{n-1}$. If $a_{n}-a_{n-1}$ is constant, the sequence is arithmetic. If $\frac{a_{n}}{a_{n-1}}$ is constant, the sequence is geometric.

Examples: Determine whether the given sequence is arithmetic, geometric, or neither. If it is arithmetic, give the common difference. If it is geometric, give the common ratio.
a) $\left\{5 n^{2}+1\right\}$
b) $\left\{\left(\frac{5}{4}\right)^{n}\right\}$
$\boldsymbol{n}$ th Term of a Geometric Sequence: For a geometric sequence $\left\{a_{n}\right\}$ whose first term is $a_{1}$ and whose common ratio is $r$, the $n$th term is determined by the formula $a_{n}=a_{1} r^{n-1} ; r \neq 0$.

Examples: Find the $n$th term and the 5th term of the geometric sequence.
a) $a_{1}=-2, r=4$
b) $a_{1}=1, r=-\frac{1}{3}$

Examples: Find the indicated term of each geometric sequence.
a) 8 th term of $1,3,9, \ldots$
b) 7 th term of $9,-6,4, \ldots$

Examples: Find the $n$th term of each geometric sequence.
a) $5,10,20,40, \ldots$
b) $a_{2}=7, r=1 / 4$
c) $a_{3}=1 / 3, a_{6}=1 / 81$

## Sum of the First $\boldsymbol{n}$ Terms of a Geometric Sequence

The sum $S_{n}$ of the first $n$ terms of a geometric sequence $\left\{a_{n}\right\}$ with first term $a_{1}$ and common ratio $r$ is given by $S_{n}=\sum_{k=1}^{n} a_{1} r^{k-1}=a_{1} \cdot \frac{1-r^{n}}{1-r}$, where $r \neq 0,1$.

Examples: Find each sum.
a) $\frac{3}{9}+\frac{3^{2}}{9}+\frac{3^{3}}{9}+\ldots+\frac{3^{n}}{9}$
b) $\sum_{k=1}^{15} 4 \cdot 3^{k-1}$
c) $2+\frac{6}{5}+\frac{18}{25}+\ldots+2\left(\frac{3}{5}\right)^{15}$
d) $\sum_{k=1}^{5}\left(\frac{2}{3}\right)^{k}$

Infinite Series: An infinite geometric series is the sum of the terms of an infinite geometric sequence. It is denoted by $\sum_{k=1}^{\infty} a_{1} r^{k-1}$. If the sum of the first $n$ terms of the geometric sequence, $S_{n}$, approaches a number $L$ as $n \rightarrow \infty$, we say that the infinite geometric series converges and that its sum is $L$. If a series does not converge, it is a divergent series.

If $|r|<1$, the infinite geometric series $\sum_{k=1}^{\infty} a_{1} r^{k-1}$ converges. Its sum is $S=\frac{a_{1}}{1-r}$.

Examples: Determine whether each geometric series converges or diverges. If it converges, find its sum.
a) $2+\frac{4}{3}+\frac{8}{9}+\ldots$
b) $9+12+16+\frac{64}{3}+\ldots$
c) $1-\frac{3}{4}+\frac{9}{16}-\frac{27}{64}+\ldots$
d) $\sum_{k=1}^{\infty} 3\left(\frac{3}{2}\right)^{k-1}$
e) $\sum_{k=1}^{\infty} 4\left(-\frac{2}{5}\right)^{k}$

