Arithmetic Sequences

An *arithmetic sequence* is one in which the difference between successive terms of a sequence is always the same number.

An arithmetic sequence may be defined recursively as $a_1 = a$, $a_n = a_{n-1} + d$, where *a* is the first term and *d* is the *common difference*. The terms of an arithmetic sequence with first term a_1 and common difference *d* follow the pattern a_1 , $a_1 + d$, $a_1 + 2d$, $a_1 + 3d$,..., $a_1 + (n-1)d$, where $d = a_n - a_{n-1}$.

Examples: Determine whether the following sequences are arithmetic:

a) 3, 7, 11, 15, 19,	b) $\frac{7}{3}, \frac{5}{3}, 1, \frac{1}{3}, \dots$
----------------------	--

★ To show that a sequence is arithmetic, find a_n and a_{n-1} . If $a_n - a_{n-1}$ is a constant (does not have a variable), then the sequence is arithmetic.

Examples: Show that the following sequences are arithmetic and find the common difference. a) $\{s_n\} = \{2n-4\}$ b) $\{b_n\} = \{\ln 2^n\}$

*n*th Term of an Arithmetic Sequence: For an arithmetic sequence $\{a_n\}$ whose first term is a_1 and whose common difference is *d*, the *n*th term is determined by the formula $a_n = a_1 + (n-1)d$.

Examples: Find the *n*th term and the fifty-first term of the following sequences. a) $a_1 = 6$, d = -2 b) $a_1 = 1$, d = -1/3

Examples: Find the indicated term in each arithmetic sequence.

a) 80th term of 29, 26, 23, 20,... b) 86th term of 2, $\frac{5}{2}$, 3, $\frac{7}{2}$,...

Examples: Find the first term and common difference of the arithmetic sequence described. Give a recursive formula for the sequence, and write a formula for the *n*th term.

a) 4th term is 3, 20th term is 35

b) 5th term is 30, 13th term is -2

Sum of an Arithmetic Sequence

The sum S_n of the first *n* terms of an arithmetic sequence $\{a_n\}$ with first term a_1 and common difference *d* is

given by
$$S_n = a_1 + a_2 + a_3 + \dots + a_n = \frac{n}{2}(a_1 + a_n).$$

Examples: Find each sum. a) -1+3+7+...+(4n-5) b) 1+3+5+...+59

c)
$$7+1-5-11-...-299$$
 d) $\sum_{k=1}^{90} (3-2k)$

e)
$$\sum_{k=1}^{80} \left(\frac{k}{3} + \frac{1}{2} \right)$$

Example: The corner section of a football stadium has 15 seats in the first row and 40 rows in all. Each successive row contains two additional seats. How many seats are in this section?