Sequences

A sequence is a function whose domain is the set of positive integers.
If the domain of $f(x)=3 x-2$ is limited to positive integers, the sequence $1,4,7,10,13 \ldots$ is generated.

We write the above sequence using sequence notation as $\left\{a_{n}\right\}=\{3 n-2\}$. Here, a is a term in the sequence, and n is the term number. For example, the tenth term in this sequence would be given by $a_{10}=3(10)-2=28$.

Examples: Write the first five terms of each sequence:
a) $\left\{s_{n}\right\}=\left\{n^{2}+1\right\}$
b) $\left\{c_{n}\right\}=\left\{(-1)^{n+1} \cdot n^{2}\right\}$
c) $\left\{t_{n}\right\}=\left\{\frac{(-1)^{n}}{(n+1)(n+2)}\right\}$

Note: The term $(-1)^{n}$ makes the odd terms of a sequence negative and the even terms positive. The terms $(-1)^{n+1}$ or $(-1)^{n-1}$ make the even terms negative and the odd terms positive.

Examples: Write down the nth term of the sequence suggested by each pattern.
a) $-\frac{2}{3}, \frac{4}{9},-\frac{8}{27}, \frac{16}{81}, \ldots$
b) $1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, 7, \frac{1}{8}, \ldots$

The Factorial Symbol

If $n \geq 0$ is an integer, then the symbol $n!$ is defined as follows:
$0!=1 \quad 1!=1 \quad 2!=2 \cdot 1=2 \quad 3!=3 \cdot 2 \cdot 1=6 \quad 4!=4 \cdot 3 \cdot 2 \cdot 1=24$ $n!=n \cdot(n-1) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 \quad n!=n \cdot(n-1)!$

Examples: Evaluate the following:
a) 6 !
b) $\frac{7!}{4!}$
c) $\frac{8!}{6!2!}$

Recursive Formula: A recursively-defined sequence assigns a value to the first term or first few terms, then specifies the nth term by a formula or equation that involves one or more of the previous terms.

Examples: Write the first five terms of each recursively-defined sequence.
a) $a_{1}=3, a_{n}=4-a_{n-1}$
b) $a_{1}=-2, a_{n}=n+3 a_{n-1}$
c) $a_{1}=-1, a_{2}=1, a_{n}=a_{n-2}+n a_{n-1}$
d) $a_{1}=A, a_{n}=r a_{n-1}$

Summation Notation

The symbol Σ (the Greek letter sigma) is an instruction to add up the terms of a sequence. The integer k is called the index of the sum; it tells you where to start the sum and where to end it. The expression $\sum_{k=1}^{n} a_{k}$ is an instruction to add the terms a_{k} of the sequence $\left\{a_{n}\right\}$ starting with $k=1$ and ending with $k=n$. It is read, "the sum of a_{k} from $k=1$ to $k=n$."

Examples: Express each sum using summation notation.
a) $1+3+5+7+\ldots+[2(12)-1]$
b) $\frac{1}{e}+\frac{2}{e^{2}}+\frac{3}{e^{3}}+\cdots+\frac{n}{e^{n}}$

Examples: Write out each sum.
a) $\sum_{k=1}^{n}(k+1)^{2}$
b) $\sum_{k=0}^{n-1}\left(\frac{1}{3^{k+1}}\right)$

Properties of Sequences

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences, and c is a real number, then:

- $\sum_{k=1}^{n}\left(c a_{k}\right)=c a_{1}+c a_{2}+\ldots+c a_{n}=c\left(a_{1}+a_{2}+\ldots+a_{n}\right)=c \sum_{k=1}^{n} a_{k}$
- $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$
- $\sum_{k=1}^{n}\left(a_{k}-b_{k}\right)=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{n} b_{k}$
- $\sum_{k=j}^{n} a_{k}=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{j-1} a_{k}$, where $1<j<n$.

Formulas for Sums of Sequences

- $\sum_{k=1}^{n} c=\underbrace{c+c+\ldots+c}_{n \text { times }}=c n$
- $\sum_{k=1}^{n} k=1+2+3+\ldots+n=\frac{n(n+1)}{2}$
- $\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
- $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

Examples: Find the sum of each sequence.
a) $\sum_{k=1}^{5}(5 k)=$
b) $\sum_{k=1}^{26}(3 k-7)=$
c) $\sum_{k=1}^{14}\left(k^{2}-4\right)=$
d) $\sum_{k=8}^{40}(-3 k)=$
e) $\sum_{k=4}^{24} k^{3}=$

