Parametric Equations

Definition:

If $x=f(t)$ and $y=g(t)$ over a specified interval of t-values, then the graph $(x, y)=(f(t), g(t))$ is a parametric curve and $f(t)$ and $g(t)$ are called parametric equations.

Again " t " is a "parameter" for x and y . " t " will be defined for a specific interval or "parametric interval"

The (x, y) pair given by the beginning and end points of the interval are called the initial and terminal points, respectively.

If we write a curve using a parameter, we have parametrized. Together the equations and the interval are called parametrization.

Your grapher will always graph end points.

Consider

$$
\begin{aligned}
& x=t-2 \\
& y=2 t+1 \\
& \text { for }-1 \leq t \leq 3 \\
& x=2 \cos (t) \\
& y=2 \sin (t) \\
& \text { for } 0 \leq t \leq 2 \pi
\end{aligned}
$$

Exploration 1

What about Ellipses?

$$
\begin{aligned}
& x=2 \cos (t) \\
& y=4 \sin (t) \\
& \text { for } 0 \leq t \leq 2 \pi
\end{aligned}
$$

Example 4 page 32

Draw the graph of

$$
x=1-t \quad y=-2 t \quad 0 \leq t \leq 1
$$

Relate this to what we already know about graphs.

$$
\begin{aligned}
& x=1-t \rightarrow x-1=-t \quad-x+1=t \\
& y=-2 t y=-2(-x+1) \quad y=2 x-2
\end{aligned}
$$

But only from $(1,0)$ to $(0,-2)$
Because of the parameters we don't have a line only a line segment.

How can we get this parametrization to graph the whole line?

How do we parametrize?
Example 5 page 32.
$(-2,1)$ and $(3,5)$
$X=-2+a t$
Linear a is $\Delta \mathrm{x}$

$$
y=1+b t
$$

(Solve for t .)
$\frac{x+2}{a}=t \quad \frac{y-1}{b}=t$
$\frac{x+2}{a}=\frac{y-1}{b}$

Determine a and b by plugging in $(3,5)$

$3=-2+a$	$5=1+b$
$a=5$	$b=4$
So \ldots	
$x=-2+5 t$	$y=1+4 t$

