Piecewise-Defined Functions

Review graphing lines, quadratics, square roots, and absolute values.

Graphing Piecewise-Defined Functions

Sometimes a function is defined differently on different parts of its domain. When functions are defined by more than one equation, they are called piecewise-defined functions.
Examples: For the following functions:
a) Graph the function.
c) Locate any intercepts.

1) $f(x)= \begin{cases}x+3 & \text { if } x \leq-1 \\ 2 x & \text { if } x>1\end{cases}$

Find $f(-3)$ and $f(2)$
3) $f(x)= \begin{cases}3-x & \text { if }-5 \leq x<-2 \\ \sqrt{x} & \text { if } 0<x<4 \\ 2 x-6 & \text { if } x \geq 4\end{cases}$

Find $f(-4), f(2)$, and $f(4)$
b) Find the domain and range of the function.
d) Find the requested function values
2) $f(x)= \begin{cases}-5 & \text { if }-4 \leq x<0 \\ x^{2}+1 & \text { if } x \geq 0\end{cases}$

Find $f(-2), f(0)$, and $f(3)$
4) $f(x)= \begin{cases}|x| & \text { if } x<2 \\ 5 & \text { if } x=2 \\ -\frac{1}{2} x & \text { if } x>2\end{cases}$

Find $f(0), f(2)$, and $f(8)$

Find the equation of the following graphs.

The graph of a piecewise function is given. Write a definition for each function.
a.

b.

c.

Talk about continuous functions.
Do problem \#13 on homework

